Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 150263 by dany last updated on 10/Aug/21

Π_(k=1) ^n (1+(k^2 /n^2 ))^(1/n)

nk=1(1+k2n2)1n

Commented by puissant last updated on 10/Aug/21

limite?

limite?

Commented by dany last updated on 10/Aug/21

yes

yes

Answered by puissant last updated on 11/Aug/21

U_n =Π_(k=1) ^n (1+(k^2 /n^2 ))^(1/n) let V_n =ln(U_n )  lim_(n→+∞) V_n =lim_(n→+∞) (1/n)Σ_(k=1) ^n ln(1+((k/n))^2 )  (Riemann integral ((b−a)/n)Σ_(k=1) ^n f(a+k((b−a)/n)))  we have lim_(n→+∞) V_n  = ∫_0 ^1 ln(1+x^2 )dx  K=∫_0 ^1 ln(1+x^2 )dx   { ((u=ln(1+x^2 ))),((v′=1)) :}⇒  { ((u′=((2x)/(1+x^2 )))),((v=x)) :}  K=[xln(1+x^2 )]_0 ^1 −2∫_0 ^1 (x^2 /(1+x^2 ))dx  =ln2−2∫_0 ^1 ((x^2 +1)/(x^2 +1))dx+2∫_0 ^1 (1/(1+x^2 ))dx  =ln2−2[x]_0 ^1 +2[arctan(x)]_0 ^1   =ln2−2+(π/2)..  lim_(n→+∞) V_n =lim_(n→+∞) ln(U_n )  ⇒ lim_(n→+∞) U_n = e^(lim_(n→+∞) V_n )   ⇒ lim_(n→+∞) U_n = e^(ln2−2+(π/2))   lim_(n→+∞) Π_(k=1) ^n (1+(k^2 /n^2 ))^(1/n) = 2e^((π/2)−2) ..      ...........Le puissant...........

Un=nk=1(1+k2n2)1nletVn=ln(Un)limn+Vn=limn+1nnk=1ln(1+(kn)2)(Riemannintegralbannk=1f(a+kban))wehavelimn+Vn=01ln(1+x2)dxK=01ln(1+x2)dx{u=ln(1+x2)v=1{u=2x1+x2v=xK=[xln(1+x2)]01201x21+x2dx=ln2201x2+1x2+1dx+20111+x2dx=ln22[x]01+2[arctan(x)]01=ln22+π2..limn+Vn=limn+ln(Un)limn+Un=elimn+Vnlimn+Un=eln22+π2limn+nk=1(1+k2n2)1n=2eπ22.............Lepuissant...........

Answered by Ar Brandon last updated on 10/Aug/21

L=lim_(n→∞) Π_(k=1) ^n (1+(k^2 /n^2 ))^(1/n)   lnL=lim_(n→∞) (1/n)lnΠ_(k=1) ^n (1+(k^2 /n^2 ))=lim_(n→∞) (1/n)Σ_(k=1) ^n ln(1+(k^2 /n^2 ))           =∫_0 ^1 ln(1+x^2 )dx=[xln(1+x^2 )]_0 ^1 −2∫_0 ^1 (x^2 /(1+x^2 ))dx            =ln2−2∫_0 ^1 (1−(1/(1+x^2 )))dx=ln2−2+(π/2)             L=e^(ln2−2+(π/2)) =2e^((π/2)−2)

L=limnnk=1(1+k2n2)1nlnL=limn1nlnnk=1(1+k2n2)=limn1nnk=1ln(1+k2n2)=01ln(1+x2)dx=[xln(1+x2)]01201x21+x2dx=ln2201(111+x2)dx=ln22+π2L=eln22+π2=2eπ22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com