Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 15036 by Tinkutara last updated on 07/Jun/17

Rotating a curve y = (√x) about the x-  axis produces a “head light” as shown  below.  What is the area of disc at any x?

$$\mathrm{Rotating}\:\mathrm{a}\:\mathrm{curve}\:{y}\:=\:\sqrt{{x}}\:\mathrm{about}\:\mathrm{the}\:{x}- \\ $$$$\mathrm{axis}\:\mathrm{produces}\:\mathrm{a}\:``\mathrm{head}\:\mathrm{light}''\:\mathrm{as}\:\mathrm{shown} \\ $$$$\mathrm{below}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{disc}\:\mathrm{at}\:\mathrm{any}\:{x}? \\ $$

Commented by Tinkutara last updated on 07/Jun/17

Commented by Tinkutara last updated on 07/Jun/17

In the above problem what is the  volume of this head light where x varies  from 0 to 2?

$$\mathrm{In}\:\mathrm{the}\:\mathrm{above}\:\mathrm{problem}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{volume}\:\mathrm{of}\:\mathrm{this}\:\mathrm{head}\:\mathrm{light}\:\mathrm{where}\:{x}\:\mathrm{varies} \\ $$$$\mathrm{from}\:\mathrm{0}\:\mathrm{to}\:\mathrm{2}? \\ $$

Answered by ajfour last updated on 07/Jun/17

  Area of disc = π((√x))^2    Volume = ∫_0 ^(  2) (πx)dx        =(((πx^2 )/2))∣_(x=0) ^(x=2)  = (π/2)((√2))^2 (2)=2π .

$$\:\:{Area}\:{of}\:{disc}\:=\:\pi\left(\sqrt{{x}}\right)^{\mathrm{2}} \: \\ $$$${Volume}\:=\:\int_{\mathrm{0}} ^{\:\:\mathrm{2}} \left(\pi{x}\right){dx} \\ $$$$\:\:\:\:\:\:=\left(\frac{\pi{x}^{\mathrm{2}} }{\mathrm{2}}\right)\mid_{{x}=\mathrm{0}} ^{{x}=\mathrm{2}} \:=\:\frac{\pi}{\mathrm{2}}\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \left(\mathrm{2}\right)=\mathrm{2}\pi\:. \\ $$

Commented by Tinkutara last updated on 07/Jun/17

But will the disc be circular so that we  can apply area = πr^2  or will they be  elliptical?

$$\mathrm{But}\:\mathrm{will}\:\mathrm{the}\:\mathrm{disc}\:\mathrm{be}\:\mathrm{circular}\:\mathrm{so}\:\mathrm{that}\:\mathrm{we} \\ $$$$\mathrm{can}\:\mathrm{apply}\:\mathrm{area}\:=\:\pi{r}^{\mathrm{2}} \:\mathrm{or}\:\mathrm{will}\:\mathrm{they}\:\mathrm{be} \\ $$$$\mathrm{elliptical}? \\ $$

Commented by ajfour last updated on 07/Jun/17

an elementary layer of disc of  at location t has its thickness dt  and radius (√t) . Its volume will be  dV=(Area×thickness)       = π((√t))^2 dt  to obtain the  sum of volumes  of such consecutive layers starting  at t=0 till t=x , we integrate the  expression of dV  with limits  t=0, to  t=x .  V (x)=π((t^2 /2))∣_(t=0) ^(t=x)  =((πx^2 )/2) .

$${an}\:{elementary}\:{layer}\:{of}\:{disc}\:{of} \\ $$$${at}\:{location}\:{t}\:{has}\:{its}\:{thickness}\:{dt} \\ $$$${and}\:{radius}\:\sqrt{{t}}\:.\:{Its}\:{volume}\:{will}\:{be} \\ $$$${dV}=\left({Area}×{thickness}\right) \\ $$$$\:\:\:\:\:=\:\pi\left(\sqrt{{t}}\right)^{\mathrm{2}} {dt} \\ $$$${to}\:{obtain}\:{the}\:\:{sum}\:{of}\:{volumes} \\ $$$${of}\:{such}\:{consecutive}\:{layers}\:{starting} \\ $$$${at}\:{t}=\mathrm{0}\:{till}\:{t}={x}\:,\:{we}\:{integrate}\:{the} \\ $$$${expression}\:{of}\:{dV}\:\:{with}\:{limits} \\ $$$${t}=\mathrm{0},\:{to}\:\:{t}={x}\:. \\ $$$${V}\:\left({x}\right)=\pi\left(\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\right)\mid_{{t}=\mathrm{0}} ^{{t}={x}} \:=\frac{\pi{x}^{\mathrm{2}} }{\mathrm{2}}\:. \\ $$

Commented by ajfour last updated on 07/Jun/17

when you rotate axes you dont  stretch it, radius will be (√x) , it  will be cicular disc .

$${when}\:{you}\:{rotate}\:{axes}\:{you}\:{dont} \\ $$$${stretch}\:{it},\:{radius}\:{will}\:{be}\:\sqrt{{x}}\:,\:{it} \\ $$$${will}\:{be}\:{cicular}\:{disc}\:. \\ $$

Commented by Tinkutara last updated on 07/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com