Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 150410 by ajfour last updated on 12/Aug/21

Commented by ajfour last updated on 12/Aug/21

If length of cylinder and  both width and length of  wedge are equal, and that  their material densities  are even equal, and their  acceleration magnitudes  (from ground reference)  are equal then find x/r.  (assume pure rolling).

$${If}\:{length}\:{of}\:{cylinder}\:{and} \\ $$$${both}\:{width}\:{and}\:{length}\:{of} \\ $$$${wedge}\:{are}\:{equal},\:{and}\:{that} \\ $$$${their}\:{material}\:{densities} \\ $$$${are}\:{even}\:{equal},\:{and}\:{their} \\ $$$${acceleration}\:{magnitudes} \\ $$$$\left({from}\:{ground}\:{reference}\right) \\ $$$${are}\:{equal}\:{then}\:{find}\:{x}/{r}. \\ $$$$\left({assume}\:{pure}\:{rolling}\right). \\ $$

Answered by ajfour last updated on 12/Aug/21

M(wedge)=ρrx^2   m(cylinder)=πρr^2 x  Nsin α−fcos α=MA=m(acos α−A)  mgrsin α+mArcos α          =(((3mr^2 )/2))((a/r))  gsin α+Acos α=((3a)/2)  A(1+(M/m))=λA=acos α  (asin α)^2 +(acos α−A)^2 =A^2   ⇒  λ^2 tan^2 α+(λ−1)^2 =1  λ=1+(M/m)=1+(x/(πr))=1+((2cos α)/(πsin α))  ⇒ λ=1+((2cot α)/π)  ⇒ (tan α+(2/π))^2 +(4/π^2 )cot^2 α=1  m=tan α  m^2 (m+(2/π))^2 −m^2 +(4/π^2 )=0  ⇒  (m+(2/π))^2 +(4/(π^2 m^2 ))=1  m=−(2/π)     (?)

$${M}\left({wedge}\right)=\rho{rx}^{\mathrm{2}} \\ $$$${m}\left({cylinder}\right)=\pi\rho{r}^{\mathrm{2}} {x} \\ $$$${N}\mathrm{sin}\:\alpha−{f}\mathrm{cos}\:\alpha={MA}={m}\left({a}\mathrm{cos}\:\alpha−{A}\right) \\ $$$$\cancel{{m}gr}\mathrm{sin}\:\alpha+\cancel{{m}Ar}\mathrm{cos}\:\alpha \\ $$$$\:\:\:\:\:\:\:\:=\left(\frac{\mathrm{3}\cancel{{m}r}^{\mathrm{2}} }{\mathrm{2}}\right)\left(\frac{{a}}{{r}}\right) \\ $$$${g}\mathrm{sin}\:\alpha+{A}\mathrm{cos}\:\alpha=\frac{\mathrm{3}{a}}{\mathrm{2}} \\ $$$${A}\left(\mathrm{1}+\frac{{M}}{{m}}\right)=\lambda{A}={a}\mathrm{cos}\:\alpha \\ $$$$\left({a}\mathrm{sin}\:\alpha\right)^{\mathrm{2}} +\left({a}\mathrm{cos}\:\alpha−{A}\right)^{\mathrm{2}} ={A}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\lambda^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \alpha+\left(\lambda−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\lambda=\mathrm{1}+\frac{{M}}{{m}}=\mathrm{1}+\frac{{x}}{\pi{r}}=\mathrm{1}+\frac{\mathrm{2cos}\:\alpha}{\pi\mathrm{sin}\:\alpha} \\ $$$$\Rightarrow\:\lambda=\mathrm{1}+\frac{\mathrm{2cot}\:\alpha}{\pi} \\ $$$$\Rightarrow\:\left(\mathrm{tan}\:\alpha+\frac{\mathrm{2}}{\pi}\right)^{\mathrm{2}} +\frac{\mathrm{4}}{\pi^{\mathrm{2}} }\mathrm{cot}\:^{\mathrm{2}} \alpha=\mathrm{1} \\ $$$${m}=\mathrm{tan}\:\alpha \\ $$$${m}^{\mathrm{2}} \left({m}+\frac{\mathrm{2}}{\pi}\right)^{\mathrm{2}} −{m}^{\mathrm{2}} +\frac{\mathrm{4}}{\pi^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow\:\:\left({m}+\frac{\mathrm{2}}{\pi}\right)^{\mathrm{2}} +\frac{\mathrm{4}}{\pi^{\mathrm{2}} {m}^{\mathrm{2}} }=\mathrm{1} \\ $$$${m}=−\frac{\mathrm{2}}{\pi}\:\:\:\:\:\left(?\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com