Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 150413 by saly last updated on 12/Aug/21

Commented by MJS_new last updated on 12/Aug/21

in this case we must take the long way home...    (1) arctan r =−(i/2)(ln (1+ir) −ln (1−ir))  ⇒  ∫arctan sin x dx=  =−(i/2)(∫ln (1+i sin x) dx−∫ln (1−i sin x) dx)    (2) sin α =((e^(iα) −e^(−iα) )/(2i))  ⇒  [similar for the 2^(nd)  integral]  ∫ln (1+i sin x) dx=  =∫ln (1+(e^(ix) /2)−(1/(2e^(ix) ))) dx    (3) t=ix ⇔ x=−it → dx=−idt  ⇒  ∫ln (1+(e^(ix) /2)−(1/(2e^(ix) ))) dx=  =iln 2∫dt −i∫ln (2+e^t −e^(−t) ) dt    (4) by parts  ⇒  ∫ln (2+e^t −e^(−t) ) dt=  =tln (2+e^t −e^(−t) ) −∫((t(e^(2t) +1))/(e^(2t) −2e^t −1))dt    (5) u=e^t  ⇔ t=ln u → dt=(du/u)  ⇒  ∫((t(e^(2t) +1))/(e^(2t) −2e^t −1))dt=  =∫(((u^2 +1)ln u)/(u(u^2 −2u−1)))du=  =2∫((uln u)/(u^2 −2u−1))du−2∫((ln u)/(u^2 −2u−1))du−∫((ln u)/u)du    and I hope you can do these yourself

$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{we}\:\mathrm{must}\:\mathrm{take}\:\mathrm{the}\:\mathrm{long}\:\mathrm{way}\:\mathrm{home}... \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:\mathrm{arctan}\:{r}\:=−\frac{\mathrm{i}}{\mathrm{2}}\left(\mathrm{ln}\:\left(\mathrm{1}+\mathrm{i}{r}\right)\:−\mathrm{ln}\:\left(\mathrm{1}−\mathrm{i}{r}\right)\right) \\ $$$$\Rightarrow \\ $$$$\int\mathrm{arctan}\:\mathrm{sin}\:{x}\:{dx}= \\ $$$$=−\frac{\mathrm{i}}{\mathrm{2}}\left(\int\mathrm{ln}\:\left(\mathrm{1}+\mathrm{i}\:\mathrm{sin}\:{x}\right)\:{dx}−\int\mathrm{ln}\:\left(\mathrm{1}−\mathrm{i}\:\mathrm{sin}\:{x}\right)\:{dx}\right) \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\mathrm{sin}\:\alpha\:=\frac{\mathrm{e}^{\mathrm{i}\alpha} −\mathrm{e}^{−\mathrm{i}\alpha} }{\mathrm{2i}} \\ $$$$\Rightarrow \\ $$$$\left[\mathrm{similar}\:\mathrm{for}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{integral}\right] \\ $$$$\int\mathrm{ln}\:\left(\mathrm{1}+\mathrm{i}\:\mathrm{sin}\:{x}\right)\:{dx}= \\ $$$$=\int\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{e}^{\mathrm{i}{x}} }{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2e}^{\mathrm{i}{x}} }\right)\:{dx} \\ $$$$ \\ $$$$\left(\mathrm{3}\right)\:{t}=\mathrm{i}{x}\:\Leftrightarrow\:{x}=−\mathrm{i}{t}\:\rightarrow\:{dx}=−\mathrm{i}{dt} \\ $$$$\Rightarrow \\ $$$$\int\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{e}^{\mathrm{i}{x}} }{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2e}^{\mathrm{i}{x}} }\right)\:{dx}= \\ $$$$=\mathrm{iln}\:\mathrm{2}\int{dt}\:−\mathrm{i}\int\mathrm{ln}\:\left(\mathrm{2}+\mathrm{e}^{{t}} −\mathrm{e}^{−{t}} \right)\:{dt} \\ $$$$ \\ $$$$\left(\mathrm{4}\right)\:\mathrm{by}\:\mathrm{parts} \\ $$$$\Rightarrow \\ $$$$\int\mathrm{ln}\:\left(\mathrm{2}+\mathrm{e}^{{t}} −\mathrm{e}^{−{t}} \right)\:{dt}= \\ $$$$={t}\mathrm{ln}\:\left(\mathrm{2}+\mathrm{e}^{{t}} −\mathrm{e}^{−{t}} \right)\:−\int\frac{{t}\left(\mathrm{e}^{\mathrm{2}{t}} +\mathrm{1}\right)}{\mathrm{e}^{\mathrm{2}{t}} −\mathrm{2e}^{{t}} −\mathrm{1}}{dt} \\ $$$$ \\ $$$$\left(\mathrm{5}\right)\:{u}=\mathrm{e}^{{t}} \:\Leftrightarrow\:{t}=\mathrm{ln}\:{u}\:\rightarrow\:{dt}=\frac{{du}}{{u}} \\ $$$$\Rightarrow \\ $$$$\int\frac{{t}\left(\mathrm{e}^{\mathrm{2}{t}} +\mathrm{1}\right)}{\mathrm{e}^{\mathrm{2}{t}} −\mathrm{2e}^{{t}} −\mathrm{1}}{dt}= \\ $$$$=\int\frac{\left({u}^{\mathrm{2}} +\mathrm{1}\right)\mathrm{ln}\:{u}}{{u}\left({u}^{\mathrm{2}} −\mathrm{2}{u}−\mathrm{1}\right)}{du}= \\ $$$$=\mathrm{2}\int\frac{{u}\mathrm{ln}\:{u}}{{u}^{\mathrm{2}} −\mathrm{2}{u}−\mathrm{1}}{du}−\mathrm{2}\int\frac{\mathrm{ln}\:{u}}{{u}^{\mathrm{2}} −\mathrm{2}{u}−\mathrm{1}}{du}−\int\frac{\mathrm{ln}\:{u}}{{u}}{du} \\ $$$$ \\ $$$$\mathrm{and}\:\mathrm{I}\:\mathrm{hope}\:\mathrm{you}\:\mathrm{can}\:\mathrm{do}\:\mathrm{these}\:\mathrm{yourself} \\ $$

Commented by saly last updated on 12/Aug/21

  Thank sir

$$\:\:{Thank}\:{sir} \\ $$

Commented by MJS_new last updated on 12/Aug/21

you′re welcome.

$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com