Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 150418 by ajfour last updated on 12/Aug/21

Commented by ajfour last updated on 12/Aug/21

For tetrahedron edge a,  and sphere radius r, find   fractional volume of sphere   within the tetrahedron.  f= { ((g_1 (a,r) ;     (a/3)≤r≤..)),((g_2 (a,r) ;   ..≤r≤..)),((g_3 (a,r) ; ..≤r≤..)) :}  hope u understand..

$${For}\:{tetrahedron}\:{edge}\:{a}, \\ $$$${and}\:{sphere}\:{radius}\:{r},\:{find}\: \\ $$$${fractional}\:{volume}\:{of}\:{sphere}\: \\ $$$${within}\:{the}\:{tetrahedron}. \\ $$$${f}=\begin{cases}{{g}_{\mathrm{1}} \left({a},{r}\right)\:;\:\:\:\:\:\frac{{a}}{\mathrm{3}}\leqslant{r}\leqslant..}\\{{g}_{\mathrm{2}} \left({a},{r}\right)\:;\:\:\:..\leqslant{r}\leqslant..}\\{{g}_{\mathrm{3}} \left({a},{r}\right)\:;\:..\leqslant{r}\leqslant..}\end{cases} \\ $$$${hope}\:{u}\:{understand}.. \\ $$

Commented by mr W last updated on 12/Aug/21

touch on two faces and intersect   on two otherfaces with intersection   of equal size?

$${touch}\:{on}\:{two}\:{faces}\:{and}\:{intersect}\: \\ $$$${on}\:{two}\:{otherfaces}\:{with}\:{intersection}\: \\ $$$${of}\:{equal}\:{size}? \\ $$

Commented by ajfour last updated on 12/Aug/21

symmetrical for the three  slant faces, just touching  the bottom one..

$${symmetrical}\:{for}\:{the}\:{three} \\ $$$${slant}\:{faces},\:{just}\:{touching} \\ $$$${the}\:{bottom}\:{one}.. \\ $$

Answered by mr W last updated on 12/Aug/21

Commented by mr W last updated on 14/Aug/21

volume of tetrahedron  V=(a^3 /(6(√2)))  area of a face  A=(((√3)a^2 )/4)  mininum radius of sphere  4×(1/3)×(((√3)a^2 )/4)×r_(min) =V=(a^3 /(6(√2)))  r_(min) =(((√6)a)/( 12))≈0.204a  i.e. if r≤(((√6)a)/(12)), the sphere is completely  inside the tetrahedron.

$${volume}\:{of}\:{tetrahedron} \\ $$$${V}=\frac{{a}^{\mathrm{3}} }{\mathrm{6}\sqrt{\mathrm{2}}} \\ $$$${area}\:{of}\:{a}\:{face} \\ $$$${A}=\frac{\sqrt{\mathrm{3}}{a}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${mininum}\:{radius}\:{of}\:{sphere} \\ $$$$\mathrm{4}×\frac{\mathrm{1}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}{a}^{\mathrm{2}} }{\mathrm{4}}×{r}_{{min}} ={V}=\frac{{a}^{\mathrm{3}} }{\mathrm{6}\sqrt{\mathrm{2}}} \\ $$$${r}_{{min}} =\frac{\sqrt{\mathrm{6}}{a}}{\:\mathrm{12}}\approx\mathrm{0}.\mathrm{204}{a} \\ $$$${i}.{e}.\:{if}\:{r}\leqslant\frac{\sqrt{\mathrm{6}}{a}}{\mathrm{12}},\:{the}\:{sphere}\:{is}\:{completely} \\ $$$${inside}\:{the}\:{tetrahedron}. \\ $$

Commented by mr W last updated on 14/Aug/21

Commented by mr W last updated on 14/Aug/21

case  r>(((√6)a)/(12))  (1/3)×(((√3)a^2 )/4)(3h+r)=V=(a^3 /(6(√2)))  ⇒h=(1/3)((((√6)a)/( 3))−r)=(((√6)a)/( 9))−(r/3)  heigth of spherical cap:  δ=r−h=((4r)/3)−(((√6)a)/( 9))=(1/3)(4r−(((√6)a)/3))  volume of a spherical cap:  V_(cap) =πδ^2 (r−(δ/3))  V_(cap) =(π/(81))(4r−(((√6)a)/3))^2 (5r+(((√6)a)/( 3)))  fractional volume of sphere inside  of the tetrahedron:  λ=1−((ΣV_(cap) )/V)=1−(3/(4πr^3 ))×((3π)/(81))(4r−(((√6)a)/3))^2 (5r+(((√6)a)/3))  λ=1−(1/(36))(4−(((√6)a)/(3r)))^2 (5+(((√6)a)/(3r)))  this is valid till r=r_(max)   with r_(max)  all three spherical caps  touch each other.

$$\boldsymbol{{case}}\:\:\boldsymbol{{r}}>\frac{\sqrt{\mathrm{6}}\boldsymbol{{a}}}{\mathrm{12}} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}{a}^{\mathrm{2}} }{\mathrm{4}}\left(\mathrm{3}{h}+{r}\right)={V}=\frac{{a}^{\mathrm{3}} }{\mathrm{6}\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow{h}=\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\sqrt{\mathrm{6}}{a}}{\:\mathrm{3}}−{r}\right)=\frac{\sqrt{\mathrm{6}}{a}}{\:\mathrm{9}}−\frac{{r}}{\mathrm{3}} \\ $$$${heigth}\:{of}\:{spherical}\:{cap}: \\ $$$$\delta={r}−{h}=\frac{\mathrm{4}{r}}{\mathrm{3}}−\frac{\sqrt{\mathrm{6}}{a}}{\:\mathrm{9}}=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{4}{r}−\frac{\sqrt{\mathrm{6}}{a}}{\mathrm{3}}\right) \\ $$$${volume}\:{of}\:{a}\:{spherical}\:{cap}: \\ $$$${V}_{{cap}} =\pi\delta^{\mathrm{2}} \left({r}−\frac{\delta}{\mathrm{3}}\right) \\ $$$${V}_{{cap}} =\frac{\pi}{\mathrm{81}}\left(\mathrm{4}{r}−\frac{\sqrt{\mathrm{6}}{a}}{\mathrm{3}}\right)^{\mathrm{2}} \left(\mathrm{5}{r}+\frac{\sqrt{\mathrm{6}}{a}}{\:\mathrm{3}}\right) \\ $$$${fractional}\:{volume}\:{of}\:{sphere}\:{inside} \\ $$$${of}\:{the}\:{tetrahedron}: \\ $$$$\lambda=\mathrm{1}−\frac{\Sigma{V}_{{cap}} }{{V}}=\mathrm{1}−\frac{\mathrm{3}}{\mathrm{4}\pi{r}^{\mathrm{3}} }×\frac{\mathrm{3}\pi}{\mathrm{81}}\left(\mathrm{4}{r}−\frac{\sqrt{\mathrm{6}}{a}}{\mathrm{3}}\right)^{\mathrm{2}} \left(\mathrm{5}{r}+\frac{\sqrt{\mathrm{6}}{a}}{\mathrm{3}}\right) \\ $$$$\lambda=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{36}}\left(\mathrm{4}−\frac{\sqrt{\mathrm{6}}{a}}{\mathrm{3}{r}}\right)^{\mathrm{2}} \left(\mathrm{5}+\frac{\sqrt{\mathrm{6}}{a}}{\mathrm{3}{r}}\right) \\ $$$${this}\:{is}\:{valid}\:{till}\:{r}={r}_{{max}} \\ $$$${with}\:{r}_{{max}} \:{all}\:{three}\:{spherical}\:{caps} \\ $$$${touch}\:{each}\:{other}. \\ $$

Commented by mr W last updated on 14/Aug/21

b^2 =r^2 −h^2 =r^2 −(1/9)((((√6)a)/( 3))−r)^2   =((8r^2 )/9)−((2a^2 )/( 27))+((2(√6)ar)/(27))  b^2 =(2/9)(4r^2 −(a^2 /( 3))+(((√6)ar)/3))  b=(1/3)(√(2(4r^2 −(a^2 /3)+(((√6)ar)/3))))  GD=(1/3)AD=(1/3)×(((√3)a)/2)=(((√3)a)/6)    ED^2 +h^2 =GD^2 +r^2   ED^2 =(a^2 /(12))+r^2 −h^2   ED^2 =(a^2 /(12))+((8r^2 )/9)−((2a^2 )/( 27))+((2(√6)ar)/(27))  ED^2 =(1/9)((a^2 /(12))+8r^2 +((2(√6)ar)/( 3)))  ED=(1/3)(√((a^2 /(12))+8r^2 +((2(√6)ar)/( 3))))

$${b}^{\mathrm{2}} ={r}^{\mathrm{2}} −{h}^{\mathrm{2}} ={r}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{9}}\left(\frac{\sqrt{\mathrm{6}}{a}}{\:\mathrm{3}}−{r}\right)^{\mathrm{2}} \\ $$$$=\frac{\mathrm{8}{r}^{\mathrm{2}} }{\mathrm{9}}−\frac{\mathrm{2}{a}^{\mathrm{2}} }{\:\mathrm{27}}+\frac{\mathrm{2}\sqrt{\mathrm{6}}{ar}}{\mathrm{27}} \\ $$$${b}^{\mathrm{2}} =\frac{\mathrm{2}}{\mathrm{9}}\left(\mathrm{4}{r}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\:\mathrm{3}}+\frac{\sqrt{\mathrm{6}}{ar}}{\mathrm{3}}\right) \\ $$$${b}=\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\mathrm{2}\left(\mathrm{4}{r}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{3}}+\frac{\sqrt{\mathrm{6}}{ar}}{\mathrm{3}}\right)} \\ $$$${GD}=\frac{\mathrm{1}}{\mathrm{3}}{AD}=\frac{\mathrm{1}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{6}} \\ $$$$ \\ $$$${ED}^{\mathrm{2}} +{h}^{\mathrm{2}} ={GD}^{\mathrm{2}} +{r}^{\mathrm{2}} \\ $$$${ED}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} }{\mathrm{12}}+{r}^{\mathrm{2}} −{h}^{\mathrm{2}} \\ $$$${ED}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} }{\mathrm{12}}+\frac{\mathrm{8}{r}^{\mathrm{2}} }{\mathrm{9}}−\frac{\mathrm{2}{a}^{\mathrm{2}} }{\:\mathrm{27}}+\frac{\mathrm{2}\sqrt{\mathrm{6}}{ar}}{\mathrm{27}} \\ $$$${ED}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{9}}\left(\frac{{a}^{\mathrm{2}} }{\mathrm{12}}+\mathrm{8}{r}^{\mathrm{2}} +\frac{\mathrm{2}\sqrt{\mathrm{6}}{ar}}{\:\mathrm{3}}\right) \\ $$$${ED}=\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{12}}+\mathrm{8}{r}^{\mathrm{2}} +\frac{\mathrm{2}\sqrt{\mathrm{6}}{ar}}{\:\mathrm{3}}} \\ $$

Commented by mr W last updated on 14/Aug/21

Commented by mr W last updated on 14/Aug/21

TD=(((√3)a)/2)  TE=TD−ED  TE=(((√3)a)/2)−(1/3)(√((a^2 /(12))+8r^2 +((2(√6)ar)/( 3))))  TE=2b=(2/3)(√(2(4r^2 −(a^2 /( 3))+(((√6)ar)/3))))  (((√3)a)/2)−(1/3)(√((a^2 /(12))+8r^2 +((2(√6)ar)/( 3))))=(2/3)(√(2(4r^2 −(a^2 /( 3))+(((√6)ar)/3))))  ((3(√3))/2)=(√((1/(12))+8(r^2 /a^2 )+((2(√6)r)/( 3a))))+2(√(2(4(r^2 /a^2 )−(1/( 3))+(((√6)r)/(3a)))))  this is the equation to determine r_(max) .  r_(max) ≈0.2989a

$${TD}=\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}} \\ $$$${TE}={TD}−{ED} \\ $$$${TE}=\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{12}}+\mathrm{8}{r}^{\mathrm{2}} +\frac{\mathrm{2}\sqrt{\mathrm{6}}{ar}}{\:\mathrm{3}}} \\ $$$${TE}=\mathrm{2}{b}=\frac{\mathrm{2}}{\mathrm{3}}\sqrt{\mathrm{2}\left(\mathrm{4}{r}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\:\mathrm{3}}+\frac{\sqrt{\mathrm{6}}{ar}}{\mathrm{3}}\right)} \\ $$$$\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{12}}+\mathrm{8}{r}^{\mathrm{2}} +\frac{\mathrm{2}\sqrt{\mathrm{6}}{ar}}{\:\mathrm{3}}}=\frac{\mathrm{2}}{\mathrm{3}}\sqrt{\mathrm{2}\left(\mathrm{4}{r}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\:\mathrm{3}}+\frac{\sqrt{\mathrm{6}}{ar}}{\mathrm{3}}\right)} \\ $$$$\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}=\sqrt{\frac{\mathrm{1}}{\mathrm{12}}+\mathrm{8}\frac{{r}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\mathrm{2}\sqrt{\mathrm{6}}{r}}{\:\mathrm{3}{a}}}+\mathrm{2}\sqrt{\mathrm{2}\left(\mathrm{4}\frac{{r}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\frac{\mathrm{1}}{\:\mathrm{3}}+\frac{\sqrt{\mathrm{6}}{r}}{\mathrm{3}{a}}\right)} \\ $$$${this}\:{is}\:{the}\:{equation}\:{to}\:{determine}\:{r}_{{max}} . \\ $$$${r}_{{max}} \approx\mathrm{0}.\mathrm{2989}{a} \\ $$

Commented by mr W last updated on 14/Aug/21

Answered by ajfour last updated on 14/Aug/21

Commented by ajfour last updated on 14/Aug/21

h(altitude)=(((√2)a)/( (√3)))  cos 2θ=(a/(2(√3)))÷((a(√3))/2)=(1/3)  R_(min) =((a/2))tan 30°tan θ           =(a/(2(√3)))(√((1−cos 2θ)/(1+cos 2θ)))  R_(min) =(a/(2(√3)))(√((2/3)/(4/3)))=(a/(2(√6)))=((a(√6))/(12))

$${h}\left({altitude}\right)=\frac{\sqrt{\mathrm{2}}{a}}{\:\sqrt{\mathrm{3}}} \\ $$$$\mathrm{cos}\:\mathrm{2}\theta=\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}\boldsymbol{\div}\frac{{a}\sqrt{\mathrm{3}}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${R}_{{min}} =\left(\frac{{a}}{\mathrm{2}}\right)\mathrm{tan}\:\mathrm{30}°\mathrm{tan}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}\sqrt{\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta}} \\ $$$${R}_{{min}} =\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}\sqrt{\frac{\mathrm{2}/\mathrm{3}}{\mathrm{4}/\mathrm{3}}}=\frac{{a}}{\mathrm{2}\sqrt{\mathrm{6}}}=\frac{{a}\sqrt{\mathrm{6}}}{\mathrm{12}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com