Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 150451 by ajfour last updated on 12/Aug/21

Commented by Ar Brandon last updated on 12/Aug/21

I admire your posts sir. Sadly I have very little knowledge  on geometry. You′re so advanced. Hahaha ! I hope I will get  there someday.

$$\mathrm{I}\:\mathrm{admire}\:\mathrm{your}\:\mathrm{posts}\:\mathrm{sir}.\:\mathrm{Sadly}\:\mathrm{I}\:\mathrm{have}\:\mathrm{very}\:\mathrm{little}\:\mathrm{knowledge} \\ $$$$\mathrm{on}\:\mathrm{geometry}.\:\mathrm{You}'\mathrm{re}\:\mathrm{so}\:\mathrm{advanced}.\:\mathrm{Hahaha}\:!\:\mathrm{I}\:\mathrm{hope}\:\mathrm{I}\:\mathrm{will}\:\mathrm{get} \\ $$$$\mathrm{there}\:\mathrm{someday}. \\ $$

Commented by ajfour last updated on 12/Aug/21

Find maximum of ratio of  regular cone volume to sphere  volume.

$${Find}\:{maximum}\:{of}\:{ratio}\:{of} \\ $$$${regular}\:{cone}\:{volume}\:{to}\:{sphere} \\ $$$${volume}. \\ $$

Answered by ajfour last updated on 12/Aug/21

Commented by ajfour last updated on 12/Aug/21

x^2 +y^2 =r^2   O(0, r−p, ptan θ)  q^2 =(r−p)^2 +p^2 tan^2 θ  s−(p/(cos θ))=R  r=scos θ  tan φ=((ptan θ)/(2r−p))  ((sin (θ+φ))/s)=((sin (θ−φ))/R)  λ=((((1/3)πr^2 h))/(((2/3)πR^3 )))=(((s^2 cos^2 θ)(ssin θ))/(2R^3 ))  λ=(1/2)[((sin (θ+φ))/(sin (θ−φ))]^3 sin θcos^2 θ  .....

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${O}\left(\mathrm{0},\:{r}−{p},\:{p}\mathrm{tan}\:\theta\right) \\ $$$${q}^{\mathrm{2}} =\left({r}−{p}\right)^{\mathrm{2}} +{p}^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \theta \\ $$$${s}−\frac{{p}}{\mathrm{cos}\:\theta}={R} \\ $$$${r}={s}\mathrm{cos}\:\theta \\ $$$$\mathrm{tan}\:\phi=\frac{{p}\mathrm{tan}\:\theta}{\mathrm{2}{r}−{p}} \\ $$$$\frac{\mathrm{sin}\:\left(\theta+\phi\right)}{{s}}=\frac{\mathrm{sin}\:\left(\theta−\phi\right)}{{R}} \\ $$$$\lambda=\frac{\left(\frac{\mathrm{1}}{\mathrm{3}}\pi{r}^{\mathrm{2}} {h}\right)}{\left(\frac{\mathrm{2}}{\mathrm{3}}\pi{R}^{\mathrm{3}} \right)}=\frac{\left({s}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta\right)\left({s}\mathrm{sin}\:\theta\right)}{\mathrm{2}{R}^{\mathrm{3}} } \\ $$$$\lambda=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{sin}\:\left(\theta+\phi\right)}{\mathrm{sin}\:\left(\theta−\phi\right.}\right]^{\mathrm{3}} \mathrm{sin}\:\theta\mathrm{cos}\:^{\mathrm{2}} \theta \\ $$$$..... \\ $$

Answered by mr W last updated on 12/Aug/21

Commented by ajfour last updated on 12/Aug/21

excellent! Sir; from beginning  till answer; thanks, indebted.

$${excellent}!\:{Sir};\:{from}\:{beginning} \\ $$$${till}\:{answer};\:{thanks},\:{indebted}. \\ $$

Commented by ajfour last updated on 12/Aug/21

but top point of cone can be lower  than that of sphere! sir.  They might just touch at  say 20° down the cone base  circle...  (see my ans. diagram..)

$${but}\:{top}\:{point}\:{of}\:{cone}\:{can}\:{be}\:{lower} \\ $$$${than}\:{that}\:{of}\:{sphere}!\:{sir}. \\ $$$${They}\:{might}\:{just}\:{touch}\:{at} \\ $$$${say}\:\mathrm{20}°\:{down}\:{the}\:{cone}\:{base} \\ $$$${circle}... \\ $$$$\left({see}\:{my}\:{ans}.\:{diagram}..\right) \\ $$

Commented by mr W last updated on 12/Aug/21

a=2Rcos 2((π/2)−θ)=2R(1−2cos^2  θ)  r=a cos θ  h=a sin θ  V_(cone) =((πr^2 h)/3)=((8πR^3 sin θ cos^2  θ(1−2cos^2  θ)^3 )/3)  V_(cone) =((8πR^3 sin θ(1−sin^2  θ)(2sin^2  θ−1)^3 )/3)  u=sin θ<1  ((3V_(cone) )/(8πR^3 ))=Θ=u(1−u^2 )(2u^2 −1)^3   Θ_(max) ≈0.0878 at sin θ≈0.8924 or   θ≈63.176°  ((2V_(cone) )/V_(sphere) )=2×((3V_(cone) )/(4πR^3 ))=4Θ≈0.3512≈35%

$${a}=\mathrm{2}{R}\mathrm{cos}\:\mathrm{2}\left(\frac{\pi}{\mathrm{2}}−\theta\right)=\mathrm{2}{R}\left(\mathrm{1}−\mathrm{2cos}^{\mathrm{2}} \:\theta\right) \\ $$$${r}={a}\:\mathrm{cos}\:\theta \\ $$$${h}={a}\:\mathrm{sin}\:\theta \\ $$$${V}_{{cone}} =\frac{\pi{r}^{\mathrm{2}} {h}}{\mathrm{3}}=\frac{\mathrm{8}\pi{R}^{\mathrm{3}} \mathrm{sin}\:\theta\:\mathrm{cos}^{\mathrm{2}} \:\theta\left(\mathrm{1}−\mathrm{2cos}^{\mathrm{2}} \:\theta\right)^{\mathrm{3}} }{\mathrm{3}} \\ $$$${V}_{{cone}} =\frac{\mathrm{8}\pi{R}^{\mathrm{3}} \mathrm{sin}\:\theta\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\theta\right)\left(\mathrm{2sin}^{\mathrm{2}} \:\theta−\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{3}} \\ $$$${u}=\mathrm{sin}\:\theta<\mathrm{1} \\ $$$$\frac{\mathrm{3}{V}_{{cone}} }{\mathrm{8}\pi{R}^{\mathrm{3}} }=\Theta={u}\left(\mathrm{1}−{u}^{\mathrm{2}} \right)\left(\mathrm{2}{u}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} \\ $$$$\Theta_{{max}} \approx\mathrm{0}.\mathrm{0878}\:{at}\:\mathrm{sin}\:\theta\approx\mathrm{0}.\mathrm{8924}\:{or}\: \\ $$$$\theta\approx\mathrm{63}.\mathrm{176}° \\ $$$$\frac{\mathrm{2}{V}_{{cone}} }{{V}_{{sphere}} }=\mathrm{2}×\frac{\mathrm{3}{V}_{{cone}} }{\mathrm{4}\pi{R}^{\mathrm{3}} }=\mathrm{4}\Theta\approx\mathrm{0}.\mathrm{3512}\approx\mathrm{35\%} \\ $$

Commented by mr W last updated on 12/Aug/21

i understand from the first diagram  that each cone should be inside a  hemisphere.

$${i}\:{understand}\:{from}\:{the}\:{first}\:{diagram} \\ $$$${that}\:{each}\:{cone}\:{should}\:{be}\:{inside}\:{a} \\ $$$${hemisphere}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com