Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 150527 by Jamshidbek last updated on 13/Aug/21

((x(x−3)(x−9)−8))^(1/3) =2x+((x^3 −3x))^(1/3)

$$\sqrt[{\mathrm{3}}]{\mathrm{x}\left(\mathrm{x}−\mathrm{3}\right)\left(\mathrm{x}−\mathrm{9}\right)−\mathrm{8}}=\mathrm{2x}+\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} −\mathrm{3x}} \\ $$

Answered by MJS_new last updated on 13/Aug/21

trying something weird:  assuming ((x^3 −3x))^(1/3) =y∈R  ⇒  x^3 =3x+y^3  (1)  x(x−3)(x−9)−8=x^3 −12x^2 +27x−8=  =(3x+y^3 )−12x^2 +27x−8=  =−12x^2 +30x+y^3 −8  now we have  ((−12x^2 +30x+y^3 −8))^(1/3) =2x+y  −12x^2 +30x+y^3 −8=(2x+y)^3   ⇔  x^3 +(3/2)x^2 (y+1)+(3/4)x(y^2 −5)+1=0 (2)  (1) x^3 −3x−y^3 =0  (2) x^3 +(3/2)x^2 (y+1)+(3/4)x(y^2 −5)+1=0  now match them  (a) (3/2)(y+1)=0  (b) (3/4)(y^2 −5)=−3  (c) −y^3 =1  ⇒ y=−1  now we have  (1) = (2) x^3 −3x+1=0  ⇒  x_1 =−2cos (π/9) ≈−1.87938524  x_2 =2sin (π/(18)) ≈.347296355  x_3 =2cos ((2π)/9) ≈1.53208889  testing these with the rule for r∈R: ((−r))^(1/3) =−(r)^(1/3)   ⇒ they all fit the given equation

$$\mathrm{trying}\:\mathrm{something}\:\mathrm{weird}: \\ $$$$\mathrm{assuming}\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} −\mathrm{3}{x}}={y}\in\mathbb{R} \\ $$$$\Rightarrow \\ $$$${x}^{\mathrm{3}} =\mathrm{3}{x}+{y}^{\mathrm{3}} \:\left(\mathrm{1}\right) \\ $$$${x}\left({x}−\mathrm{3}\right)\left({x}−\mathrm{9}\right)−\mathrm{8}={x}^{\mathrm{3}} −\mathrm{12}{x}^{\mathrm{2}} +\mathrm{27}{x}−\mathrm{8}= \\ $$$$=\left(\mathrm{3}{x}+{y}^{\mathrm{3}} \right)−\mathrm{12}{x}^{\mathrm{2}} +\mathrm{27}{x}−\mathrm{8}= \\ $$$$=−\mathrm{12}{x}^{\mathrm{2}} +\mathrm{30}{x}+{y}^{\mathrm{3}} −\mathrm{8} \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{have} \\ $$$$\sqrt[{\mathrm{3}}]{−\mathrm{12}{x}^{\mathrm{2}} +\mathrm{30}{x}+{y}^{\mathrm{3}} −\mathrm{8}}=\mathrm{2}{x}+{y} \\ $$$$−\mathrm{12}{x}^{\mathrm{2}} +\mathrm{30}{x}+{y}^{\mathrm{3}} −\mathrm{8}=\left(\mathrm{2}{x}+{y}\right)^{\mathrm{3}} \\ $$$$\Leftrightarrow \\ $$$${x}^{\mathrm{3}} +\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} \left({y}+\mathrm{1}\right)+\frac{\mathrm{3}}{\mathrm{4}}{x}\left({y}^{\mathrm{2}} −\mathrm{5}\right)+\mathrm{1}=\mathrm{0}\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)\:{x}^{\mathrm{3}} −\mathrm{3}{x}−{y}^{\mathrm{3}} =\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:{x}^{\mathrm{3}} +\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} \left({y}+\mathrm{1}\right)+\frac{\mathrm{3}}{\mathrm{4}}{x}\left({y}^{\mathrm{2}} −\mathrm{5}\right)+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{now}\:\mathrm{match}\:\mathrm{them} \\ $$$$\left({a}\right)\:\frac{\mathrm{3}}{\mathrm{2}}\left({y}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({b}\right)\:\frac{\mathrm{3}}{\mathrm{4}}\left({y}^{\mathrm{2}} −\mathrm{5}\right)=−\mathrm{3} \\ $$$$\left({c}\right)\:−{y}^{\mathrm{3}} =\mathrm{1} \\ $$$$\Rightarrow\:{y}=−\mathrm{1} \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{have} \\ $$$$\left(\mathrm{1}\right)\:=\:\left(\mathrm{2}\right)\:{x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${x}_{\mathrm{1}} =−\mathrm{2cos}\:\frac{\pi}{\mathrm{9}}\:\approx−\mathrm{1}.\mathrm{87938524} \\ $$$${x}_{\mathrm{2}} =\mathrm{2sin}\:\frac{\pi}{\mathrm{18}}\:\approx.\mathrm{347296355} \\ $$$${x}_{\mathrm{3}} =\mathrm{2cos}\:\frac{\mathrm{2}\pi}{\mathrm{9}}\:\approx\mathrm{1}.\mathrm{53208889} \\ $$$$\mathrm{testing}\:\mathrm{these}\:\mathrm{with}\:\mathrm{the}\:\mathrm{rule}\:\mathrm{for}\:{r}\in\mathbb{R}:\:\sqrt[{\mathrm{3}}]{−{r}}=−\sqrt[{\mathrm{3}}]{{r}} \\ $$$$\Rightarrow\:\mathrm{they}\:\mathrm{all}\:\mathrm{fit}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation} \\ $$

Commented by Jamshidbek last updated on 13/Aug/21

Thank you! Very good method

$$\mathrm{Thank}\:\mathrm{you}!\:\mathrm{Very}\:\mathrm{good}\:\mathrm{method} \\ $$

Commented by MJS_new last updated on 13/Aug/21

...not sure if it will always work...

$$...\mathrm{not}\:\mathrm{sure}\:\mathrm{if}\:\mathrm{it}\:\mathrm{will}\:\mathrm{always}\:\mathrm{work}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com