Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 150626 by puissant last updated on 14/Aug/21

S(x)=Σ_(n=1) ^∞ ln(1+(1/n))x^n   S(−1)= ?..  please help..

$${S}\left({x}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right){x}^{{n}} \\ $$$${S}\left(−\mathrm{1}\right)=\:?.. \\ $$$${please}\:{help}.. \\ $$

Answered by puissant last updated on 14/Aug/21

S(x)=Σ_(n=1) ^∞ ln(1+(1/n))x^n  ; S(−1)=?  S(−1)=Σ_(n=1) ^∞ (−1)^n (ln(n+1)−ln(n))  = lim_(p→∞) Σ_(n=1) ^(2p) (−1)^n (ln(n+1)−ln(n))  =lim_(p→∞) [2(−ln2+ln3+....−ln(2p))+ln(2p+1)]  =lim_(p→∞) ln[(((3.5.7.....(2p−1))/(2.4.6.....2p)))^2 (2p+1)(((2.4...2p)/(2.4...2p)))^2 ]  =lim_(p→∞) ln((((2p!)^2 (2p+1))/(2^(4p) (p!)^2 )))  D′apre^� s STIRLING, on a:  (((2p!)^2 (2p+1))/(2^(2p) (p!)^4 )) ∼_(+∞) (((2p)/e))^4 ((((√(2pπ)))^4 (2p+1))/(2^(2p) ((p/e))^(4p) ((√(2pπ)))^4 ))  ∼_(+∞) (2/π)           ∵ ⇒ S(−1)=ln((2/π))...

$${S}\left({x}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right){x}^{{n}} \:;\:{S}\left(−\mathrm{1}\right)=? \\ $$$${S}\left(−\mathrm{1}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \left({ln}\left({n}+\mathrm{1}\right)−{ln}\left({n}\right)\right) \\ $$$$=\:{lim}_{{p}\rightarrow\infty} \underset{{n}=\mathrm{1}} {\overset{\mathrm{2}{p}} {\sum}}\left(−\mathrm{1}\right)^{{n}} \left({ln}\left({n}+\mathrm{1}\right)−{ln}\left({n}\right)\right) \\ $$$$={lim}_{{p}\rightarrow\infty} \left[\mathrm{2}\left(−{ln}\mathrm{2}+{ln}\mathrm{3}+....−{ln}\left(\mathrm{2}{p}\right)\right)+{ln}\left(\mathrm{2}{p}+\mathrm{1}\right)\right] \\ $$$$={lim}_{{p}\rightarrow\infty} {ln}\left[\left(\frac{\mathrm{3}.\mathrm{5}.\mathrm{7}.....\left(\mathrm{2}{p}−\mathrm{1}\right)}{\mathrm{2}.\mathrm{4}.\mathrm{6}.....\mathrm{2}{p}}\right)^{\mathrm{2}} \left(\mathrm{2}{p}+\mathrm{1}\right)\left(\frac{\mathrm{2}.\mathrm{4}...\mathrm{2}{p}}{\mathrm{2}.\mathrm{4}...\mathrm{2}{p}}\right)^{\mathrm{2}} \right] \\ $$$$={lim}_{{p}\rightarrow\infty} {ln}\left(\frac{\left(\mathrm{2}{p}!\right)^{\mathrm{2}} \left(\mathrm{2}{p}+\mathrm{1}\right)}{\mathrm{2}^{\mathrm{4}{p}} \left({p}!\right)^{\mathrm{2}} }\right) \\ $$$${D}'{apr}\grave {{e}s}\:{STIRLING},\:{on}\:{a}: \\ $$$$\frac{\left(\mathrm{2}{p}!\right)^{\mathrm{2}} \left(\mathrm{2}{p}+\mathrm{1}\right)}{\mathrm{2}^{\mathrm{2}{p}} \left({p}!\right)^{\mathrm{4}} }\:\underset{+\infty} {\sim}\left(\frac{\mathrm{2}{p}}{{e}}\right)^{\mathrm{4}} \frac{\left(\sqrt{\mathrm{2}{p}\pi}\right)^{\mathrm{4}} \left(\mathrm{2}{p}+\mathrm{1}\right)}{\mathrm{2}^{\mathrm{2}{p}} \left(\frac{{p}}{{e}}\right)^{\mathrm{4}{p}} \left(\sqrt{\mathrm{2}{p}\pi}\right)^{\mathrm{4}} } \\ $$$$\underset{+\infty} {\sim}\frac{\mathrm{2}}{\pi} \\ $$$$\:\:\:\:\:\:\:\:\:\because\:\Rightarrow\:{S}\left(−\mathrm{1}\right)={ln}\left(\frac{\mathrm{2}}{\pi}\right)... \\ $$

Commented by Tawa11 last updated on 14/Aug/21

great

$$\mathrm{great} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com