Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 150647 by puissant last updated on 14/Aug/21

Answered by puissant last updated on 14/Aug/21

posons  I_(2n) =∫_0 ^(π/2) (sint)^(2n) dt  =((1×3×5......×(2n−1))/(2×4×6×.....×2n))×(π/2)  ⇒  I_(2n) =((2n!)/(2^(2n) n!))×(π/2)  (integrale de Wallis)  or  e^(ixsint) =Σ_(n≥0) (((e^(ixsint) ))/(n!))  on a:  ∫_(−π) ^( π) e^(ixsint) dt= Σ_(n≥0) (((ix)^n )/(n!))∫_(−π) ^( π) (sint)^n dt  ⇒ ∫_(−π) ^( π) e^(ixsint) dt=Σ_(n≥0) (((−1)^n x^(2n) )/((2n)!))(4∫_0 ^( (π/2)) (sint)^(2n) dt)  =Σ_(n≥0) (−1)^n (x^(2n) /((2n)!))×4(((2n)!)/(2^(2n) (n!)^2 ))×(π/2)  = Σ_(n≥0) (−1)^n (x^(2n) /(2^(2n) (n!)^2 ))×2π  ⇒ ∫_(−π) ^( π) e^(ixsint) dt=2πf(x)  D′ou f(x)=(1/(2π))∫_(−π) ^( π) e^(ixsint) dt...                     ............Le puissant..........

posonsI2n=0π2(sint)2ndt=1×3×5......×(2n1)2×4×6×.....×2n×π2I2n=2n!22nn!×π2(integraledeWallis)oreixsint=n0(eixsint)n!ona:ππeixsintdt=n0(ix)nn!ππ(sint)ndtππeixsintdt=n0(1)nx2n(2n)!(40π2(sint)2ndt)=n0(1)nx2n(2n)!×4(2n)!22n(n!)2×π2=n0(1)nx2n22n(n!)2×2πππeixsintdt=2πf(x)Douf(x)=12πππeixsintdt...............Lepuissant..........

Terms of Service

Privacy Policy

Contact: info@tinkutara.com