Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 150654 by mnjuly1970 last updated on 14/Aug/21

Answered by Ar Brandon last updated on 14/Aug/21

S=Σ_(n=1) ^∞ (((−1)^n )/((3n+1)(3n+2)))=Σ_(n=1) ^∞ (−1)^n ((1/(3n+1))−(1/(3n+2)))     =Σ_(n=1) ^∞ (−1)^n ∫_0 ^1 (x^(3n) −x^(3n+1) )dx=∫_0 ^1 Σ_(n≥1) ((−x)^(3n) +(−x)^(3n+1) )dx     =∫_0 ^1 (((−x^3 )/(1+x^3 ))+(x^4 /(1+x^3 )))dx=∫_0 ^1 ((x^3 (x−1))/(x^3 +1))dx=∫_0 ^1 (x−1−((x−1)/(x^3 +1)))dx     =∫_0 ^1 (x−1−((x−1)/((x+1)(x^2 −x+1))))dx=∫_0 ^1 (x−1+(2/(3(x+1)))−((2x−1)/(3(x^2 −x+1))))dx     =[(x^2 /2)−x+(2/3)ln(x+1)−(1/3)ln(x^2 −x+1)]_0 ^1 =−(1/2)+(2/3)ln(2)

$${S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \left(\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{2}}\right) \\ $$$$\:\:\:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{\mathrm{3}{n}} −{x}^{\mathrm{3}{n}+\mathrm{1}} \right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}\geqslant\mathrm{1}} {\sum}\left(\left(−{x}\right)^{\mathrm{3}{n}} +\left(−{x}\right)^{\mathrm{3}{n}+\mathrm{1}} \right){dx} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{−{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{3}} }+\frac{{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{3}} }\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{3}} \left({x}−\mathrm{1}\right)}{{x}^{\mathrm{3}} +\mathrm{1}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}−\mathrm{1}−\frac{{x}−\mathrm{1}}{{x}^{\mathrm{3}} +\mathrm{1}}\right){dx} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}−\mathrm{1}−\frac{{x}−\mathrm{1}}{\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)}\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}−\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}\left({x}+\mathrm{1}\right)}−\frac{\mathrm{2}{x}−\mathrm{1}}{\mathrm{3}\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)}\right){dx} \\ $$$$\:\:\:=\left[\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−{x}+\frac{\mathrm{2}}{\mathrm{3}}\mathrm{ln}\left({x}+\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{2}}{\mathrm{3}}\mathrm{ln}\left(\mathrm{2}\right) \\ $$

Commented by Tawa11 last updated on 14/Aug/21

Great

$$\mathrm{Great} \\ $$

Commented by mnjuly1970 last updated on 14/Aug/21

 grateful.. very nice...

$$\:{grateful}..\:{very}\:{nice}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com