Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 150688 by ajfour last updated on 14/Aug/21

Commented by ajfour last updated on 14/Aug/21

Find maximum tetrahedron  volume.

$${Find}\:{maximum}\:{tetrahedron} \\ $$$${volume}. \\ $$

Answered by mr W last updated on 14/Aug/21

Commented by mr W last updated on 14/Aug/21

((((√6)s)/3)−R)^2 +((s/( (√3))))^2 =R^2   ⇒s=((2(√6)R)/3)  V_(tetrahedron) =(s^3 /(6(√2)))=((8(√3)R^3 )/(27))  (V_(tetrahedron) /V_(sphere) )=((8(√3)R^3 )/(27))×(3/(4πR^3 ))=((2(√3))/(9π))≈12%

$$\left(\frac{\sqrt{\mathrm{6}}{s}}{\mathrm{3}}−{R}\right)^{\mathrm{2}} +\left(\frac{{s}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\Rightarrow{s}=\frac{\mathrm{2}\sqrt{\mathrm{6}}{R}}{\mathrm{3}} \\ $$$${V}_{{tetrahedron}} =\frac{{s}^{\mathrm{3}} }{\mathrm{6}\sqrt{\mathrm{2}}}=\frac{\mathrm{8}\sqrt{\mathrm{3}}{R}^{\mathrm{3}} }{\mathrm{27}} \\ $$$$\frac{{V}_{{tetrahedron}} }{{V}_{{sphere}} }=\frac{\mathrm{8}\sqrt{\mathrm{3}}{R}^{\mathrm{3}} }{\mathrm{27}}×\frac{\mathrm{3}}{\mathrm{4}\pi{R}^{\mathrm{3}} }=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{9}\pi}\approx\mathrm{12\%} \\ $$

Commented by ajfour last updated on 14/Aug/21

sir, i think, i couldn′t convey  my question clearly.  i meant a tetrahedron  excavated out of a sphere of  radius R, with one vertex  at centre of sphere, while  rest three on the surface of  sphere. It should be of max  volume and not necessarily  regular.    V=(1/3)(((√3)/4)s^2 )(√(R^2 −((s/(2cos 30°)))^2 ))  V^( 2) =(((s^2 )^2 )/(48))(R^2 −(s^2 /3))  (dV^( 2) /ds^2 )=0  ⇒ 2s^2 (R^2 −(s^2 /3))−(((s^2 )^2 )/3)=0  ⇒  s^2 =2R^2   V_(max) =(R^2 /( 2(√3)))((R/( (√3))))=(R^3 /6)

$${sir},\:{i}\:{think},\:{i}\:{couldn}'{t}\:{convey} \\ $$$${my}\:{question}\:{clearly}. \\ $$$${i}\:{meant}\:{a}\:{tetrahedron} \\ $$$${excavated}\:{out}\:{of}\:{a}\:{sphere}\:{of} \\ $$$${radius}\:{R},\:{with}\:{one}\:{vertex} \\ $$$${at}\:{centre}\:{of}\:{sphere},\:{while} \\ $$$${rest}\:{three}\:{on}\:{the}\:{surface}\:{of} \\ $$$${sphere}.\:{It}\:{should}\:{be}\:{of}\:{max} \\ $$$${volume}\:{and}\:{not}\:{necessarily} \\ $$$${regular}.\: \\ $$$$\:{V}=\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{s}^{\mathrm{2}} \right)\sqrt{{R}^{\mathrm{2}} −\left(\frac{{s}}{\mathrm{2cos}\:\mathrm{30}°}\right)^{\mathrm{2}} } \\ $$$${V}^{\:\mathrm{2}} =\frac{\left({s}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{48}}\left({R}^{\mathrm{2}} −\frac{{s}^{\mathrm{2}} }{\mathrm{3}}\right) \\ $$$$\frac{{dV}^{\:\mathrm{2}} }{{ds}^{\mathrm{2}} }=\mathrm{0}\:\:\Rightarrow\:\mathrm{2}{s}^{\mathrm{2}} \left({R}^{\mathrm{2}} −\frac{{s}^{\mathrm{2}} }{\mathrm{3}}\right)−\frac{\left({s}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow\:\:{s}^{\mathrm{2}} =\mathrm{2}{R}^{\mathrm{2}} \\ $$$${V}_{{max}} =\frac{{R}^{\mathrm{2}} }{\:\mathrm{2}\sqrt{\mathrm{3}}}\left(\frac{{R}}{\:\sqrt{\mathrm{3}}}\right)=\frac{{R}^{\mathrm{3}} }{\mathrm{6}} \\ $$

Commented by mr W last updated on 14/Aug/21

i see now.

$${i}\:{see}\:{now}. \\ $$

Answered by ajfour last updated on 14/Aug/21

Rsin θcos ((π/6))=(s/2)  s=R(√3)sin θ    V=(1/3)(((√3)/4)s^2 )Rcos θ    =(1/( 3))(((√3)/4))(3R^2 sin^2 θ)Rcos θ  (dV/dθ)=((√3)/4)R^3 (2sin θcos^2 θ−sin^3 θ)  (dV/dθ)=0   ⇒  tan θ=0, (√2)  V_(max) =(((√3)R^3 )/4)((2/3))((1/( (√3))))  V_(max) =(R^3 /6)  (V_(max) /V_(sphere) )=(1/6)((3/(4π)))=(1/(8π))  (but this is very less!  something wrong, i guess!)

$${R}\mathrm{sin}\:\theta\mathrm{cos}\:\left(\frac{\pi}{\mathrm{6}}\right)=\frac{{s}}{\mathrm{2}} \\ $$$${s}={R}\sqrt{\mathrm{3}}\mathrm{sin}\:\theta\:\: \\ $$$${V}=\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{s}^{\mathrm{2}} \right){R}\mathrm{cos}\:\theta \\ $$$$\:\:=\frac{\mathrm{1}}{\:\mathrm{3}}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\right)\left(\mathrm{3}{R}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta\right){R}\mathrm{cos}\:\theta \\ $$$$\frac{{dV}}{{d}\theta}=\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{R}^{\mathrm{3}} \left(\mathrm{2sin}\:\theta\mathrm{cos}\:^{\mathrm{2}} \theta−\mathrm{sin}\:^{\mathrm{3}} \theta\right) \\ $$$$\frac{{dV}}{{d}\theta}=\mathrm{0}\:\:\:\Rightarrow\:\:\mathrm{tan}\:\theta=\mathrm{0},\:\sqrt{\mathrm{2}} \\ $$$${V}_{{max}} =\frac{\sqrt{\mathrm{3}}{R}^{\mathrm{3}} }{\mathrm{4}}\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right) \\ $$$${V}_{{max}} =\frac{{R}^{\mathrm{3}} }{\mathrm{6}} \\ $$$$\frac{{V}_{{max}} }{{V}_{{sphere}} }=\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{3}}{\mathrm{4}\pi}\right)=\frac{\mathrm{1}}{\mathrm{8}\pi} \\ $$$$\left({but}\:{this}\:{is}\:{very}\:{less}!\right. \\ $$$$\left.{something}\:{wrong},\:{i}\:{guess}!\right) \\ $$

Commented by mr W last updated on 14/Aug/21

it′s correct sir!

$${it}'{s}\:{correct}\:{sir}! \\ $$

Answered by mr W last updated on 14/Aug/21

Commented by mr W last updated on 14/Aug/21

r=(√(R^2 −h^2 ))  a=side length of base triangle  a=(√3)r=(√(3(R^2 −h^2 )))  A=(((√3)a^2 )/4)=((3(√3)(R^2 −h^2 ))/4)  V=((Ah)/3)=(((√3)(R^2 −h^2 )h)/4)  (dV/dh)=0 ⇒R^2 −3h^2 =0 ⇒h=(R/( (√3)))  V_(max) =(((√3)(R^2 −(R^2 /3))×(R/( (√3))))/4)=(R^3 /6)

$${r}=\sqrt{{R}^{\mathrm{2}} −{h}^{\mathrm{2}} } \\ $$$${a}={side}\:{length}\:{of}\:{base}\:{triangle} \\ $$$${a}=\sqrt{\mathrm{3}}{r}=\sqrt{\mathrm{3}\left({R}^{\mathrm{2}} −{h}^{\mathrm{2}} \right)} \\ $$$${A}=\frac{\sqrt{\mathrm{3}}{a}^{\mathrm{2}} }{\mathrm{4}}=\frac{\mathrm{3}\sqrt{\mathrm{3}}\left({R}^{\mathrm{2}} −{h}^{\mathrm{2}} \right)}{\mathrm{4}} \\ $$$${V}=\frac{{Ah}}{\mathrm{3}}=\frac{\sqrt{\mathrm{3}}\left({R}^{\mathrm{2}} −{h}^{\mathrm{2}} \right){h}}{\mathrm{4}} \\ $$$$\frac{{dV}}{{dh}}=\mathrm{0}\:\Rightarrow{R}^{\mathrm{2}} −\mathrm{3}{h}^{\mathrm{2}} =\mathrm{0}\:\Rightarrow{h}=\frac{{R}}{\:\sqrt{\mathrm{3}}} \\ $$$${V}_{{max}} =\frac{\sqrt{\mathrm{3}}\left({R}^{\mathrm{2}} −\frac{{R}^{\mathrm{2}} }{\mathrm{3}}\right)×\frac{{R}}{\:\sqrt{\mathrm{3}}}}{\mathrm{4}}=\frac{{R}^{\mathrm{3}} }{\mathrm{6}} \\ $$

Commented by ajfour last updated on 14/Aug/21

thanks sir.

$${thanks}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com