Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 150718 by mathdanisur last updated on 14/Aug/21

Calculate:  Li_2 (z) + Li_2 (1 - z) = ?

$$\mathrm{Calculate}: \\ $$$$\mathrm{Li}_{\mathrm{2}} \left(\boldsymbol{\mathrm{z}}\right)\:+\:\mathrm{Li}_{\mathrm{2}} \left(\mathrm{1}\:-\:\boldsymbol{\mathrm{z}}\right)\:=\:? \\ $$

Answered by Olaf_Thorendsen last updated on 14/Aug/21

Li(z) = −∫_0 ^z ((ln(1−u))/u) du   (1)  Li′(z) = −((ln(1−z))/z)  Li′(1−z) = −((lnz)/(1−z))  Li′(z)−Li′(1−z) = −[((ln(1−z))/z)−((lnz)/(1−z))]  Li′(z)−Li′(1−z) = −(d/dz)[lnz.ln(1−z)]  ⇒ Li(z)+Li(1−z) = −lnz.ln(1−z)+C (2)    With (1) : Li(z) = Σ_(k=1) ^∞ (z^k /k^2 )  Li(0) = Σ_(k=1) ^∞ (0^k /k^2 ) = 0  Li(1) = Σ_(k=1) ^∞ (1^k /k^2 ) = Σ_(k=1) ^∞ (1/k^2 ) = (π^2 /6)  (2) : Li(0^+ )+Li(1−0^+ ) = −ln0^+ .ln(1−0^+ )+C  0+(π^2 /6) = 0+C ⇒ C = (π^2 /6)    Li(z)+Li(1−z) = −lnz.ln(1−z)+(π^2 /6)

$$\mathrm{Li}\left({z}\right)\:=\:−\int_{\mathrm{0}} ^{{z}} \frac{\mathrm{ln}\left(\mathrm{1}−{u}\right)}{{u}}\:{du}\:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{Li}'\left({z}\right)\:=\:−\frac{\mathrm{ln}\left(\mathrm{1}−{z}\right)}{{z}} \\ $$$$\mathrm{Li}'\left(\mathrm{1}−{z}\right)\:=\:−\frac{\mathrm{ln}{z}}{\mathrm{1}−{z}} \\ $$$$\mathrm{Li}'\left({z}\right)−\mathrm{Li}'\left(\mathrm{1}−{z}\right)\:=\:−\left[\frac{\mathrm{ln}\left(\mathrm{1}−{z}\right)}{{z}}−\frac{\mathrm{ln}{z}}{\mathrm{1}−{z}}\right] \\ $$$$\mathrm{Li}'\left({z}\right)−\mathrm{Li}'\left(\mathrm{1}−{z}\right)\:=\:−\frac{{d}}{{dz}}\left[\mathrm{ln}{z}.\mathrm{ln}\left(\mathrm{1}−{z}\right)\right] \\ $$$$\Rightarrow\:\mathrm{Li}\left({z}\right)+\mathrm{Li}\left(\mathrm{1}−{z}\right)\:=\:−\mathrm{ln}{z}.\mathrm{ln}\left(\mathrm{1}−{z}\right)+\mathrm{C}\:\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\mathrm{With}\:\left(\mathrm{1}\right)\::\:\mathrm{Li}\left({z}\right)\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{z}^{{k}} }{{k}^{\mathrm{2}} } \\ $$$$\mathrm{Li}\left(\mathrm{0}\right)\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{0}^{{k}} }{{k}^{\mathrm{2}} }\:=\:\mathrm{0} \\ $$$$\mathrm{Li}\left(\mathrm{1}\right)\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}^{{k}} }{{k}^{\mathrm{2}} }\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\left(\mathrm{2}\right)\::\:\mathrm{Li}\left(\mathrm{0}^{+} \right)+\mathrm{Li}\left(\mathrm{1}−\mathrm{0}^{+} \right)\:=\:−\mathrm{ln0}^{+} .\mathrm{ln}\left(\mathrm{1}−\mathrm{0}^{+} \right)+\mathrm{C} \\ $$$$\mathrm{0}+\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:=\:\mathrm{0}+\mathrm{C}\:\Rightarrow\:\mathrm{C}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$ \\ $$$$\mathrm{Li}\left({z}\right)+\mathrm{Li}\left(\mathrm{1}−{z}\right)\:=\:−\mathrm{ln}{z}.\mathrm{ln}\left(\mathrm{1}−{z}\right)+\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$

Commented by Olaf_Thorendsen last updated on 14/Aug/21

(here Li is Li_2  of course)

$$\left(\mathrm{here}\:\mathrm{Li}\:\mathrm{is}\:\mathrm{Li}_{\mathrm{2}} \:\mathrm{of}\:\mathrm{course}\right) \\ $$

Commented by mathdanisur last updated on 15/Aug/21

Thank you Ser cool

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Ser}\:\mathrm{cool} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com