Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 150747 by mnjuly1970 last updated on 15/Aug/21

  prove ::                     Ω:=∫_0 ^( ∞) e^(−(√x)) .ln ((( x))^(1/4)  )=^?  1−γ   m.n..

$$ \\ $$$${prove}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega:=\int_{\mathrm{0}} ^{\:\infty} {e}^{−\sqrt{{x}}} .{ln}\:\left(\sqrt[{\mathrm{4}}]{\:{x}}\:\right)\overset{?} {=}\:\mathrm{1}−\gamma \\ $$$$\:{m}.{n}.. \\ $$

Answered by Olaf_Thorendsen last updated on 15/Aug/21

Ω = ∫_0 ^∞ e^(−(√x)) ln((x)^(1/4) ) dx  Ω = ∫_0 ^∞ e^(−u) ln((√u)) (2udu)  Ω = ∫_0 ^∞ ue^(−u) lnu du  ψ(z) = ((∫_0 ^∞ y^(z−1) lny e^(−y)  dy)/(∫_0 ^∞ y^(z−1) e^(−y)  dy))  ψ(2) = ((∫_0 ^∞ y.lny e^(−y)  dy)/(∫_0 ^∞ ye^(−y)  dy))  = (Ω/(∫_0 ^∞ ye^(−y)  dy))   ∫_0 ^∞ ue^(−u) du = [−ue^(−u) ]_0 ^∞ +∫_0 ^∞ e^(−u) du = 1  ⇒ Ω = ψ(2)    ψ(z+1) = ψ(z)+(1/z)  ψ(2) = ψ(1)+(1/1) = −γ+1    Ω = 1−γ = ψ(2)

$$\Omega\:=\:\int_{\mathrm{0}} ^{\infty} {e}^{−\sqrt{{x}}} \mathrm{ln}\left(\sqrt[{\mathrm{4}}]{{x}}\right)\:{dx} \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\infty} {e}^{−{u}} \mathrm{ln}\left(\sqrt{{u}}\right)\:\left(\mathrm{2}{udu}\right) \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\infty} {ue}^{−{u}} \mathrm{ln}{u}\:{du} \\ $$$$\psi\left({z}\right)\:=\:\frac{\int_{\mathrm{0}} ^{\infty} {y}^{{z}−\mathrm{1}} \mathrm{ln}{y}\:{e}^{−{y}} \:{dy}}{\int_{\mathrm{0}} ^{\infty} {y}^{{z}−\mathrm{1}} {e}^{−{y}} \:{dy}} \\ $$$$\psi\left(\mathrm{2}\right)\:=\:\frac{\int_{\mathrm{0}} ^{\infty} {y}.\mathrm{ln}{y}\:{e}^{−{y}} \:{dy}}{\int_{\mathrm{0}} ^{\infty} {ye}^{−{y}} \:{dy}}\:\:=\:\frac{\Omega}{\int_{\mathrm{0}} ^{\infty} {ye}^{−{y}} \:{dy}}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} {ue}^{−{u}} {du}\:=\:\left[−{ue}^{−{u}} \right]_{\mathrm{0}} ^{\infty} +\int_{\mathrm{0}} ^{\infty} {e}^{−{u}} {du}\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\Omega\:=\:\psi\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\psi\left({z}+\mathrm{1}\right)\:=\:\psi\left({z}\right)+\frac{\mathrm{1}}{{z}} \\ $$$$\psi\left(\mathrm{2}\right)\:=\:\psi\left(\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{1}}\:=\:−\gamma+\mathrm{1} \\ $$$$ \\ $$$$\Omega\:=\:\mathrm{1}−\gamma\:=\:\psi\left(\mathrm{2}\right) \\ $$

Commented by mnjuly1970 last updated on 16/Aug/21

grateful mr olaf..

$${grateful}\:{mr}\:{olaf}.. \\ $$

Answered by mathmax by abdo last updated on 17/Aug/21

Ψ=∫_0 ^∞  e^(−(√x)) ln(x^(1/4) )dx ⇒Ψ=_((√x)=t)  ∫_0 ^∞ e^(−t) ln(t^(1/2) )(2t)dt  =2∫_0 ^∞  (t/2)ln(t)e^(−t)  dt =∫_0 ^∞  te^(−t) ln(t)dt  =∫_0 ^∞ (tlnt)e^(−t) dt  by parts u=tlnt and v^(′ ) =e^(−t)   =[−e^(−t) (tlnt)]_0 ^∞ −∫_0 ^∞ (lnt+1)(−e^(−t) )dt  =0+∫_0 ^∞ e^(−t) (1+lnt)dt =∫_0 ^∞ e^(−t)  dt +∫_0 ^∞ e^(−t) lnt dt  =1−γ

$$\Psi=\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\sqrt{\mathrm{x}}} \mathrm{ln}\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{4}}} \right)\mathrm{dx}\:\Rightarrow\Psi=_{\sqrt{\mathrm{x}}=\mathrm{t}} \:\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{t}} \mathrm{ln}\left(\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)\left(\mathrm{2t}\right)\mathrm{dt} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{t}\right)\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\mathrm{te}^{−\mathrm{t}} \mathrm{ln}\left(\mathrm{t}\right)\mathrm{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \left(\mathrm{tlnt}\right)\mathrm{e}^{−\mathrm{t}} \mathrm{dt}\:\:\mathrm{by}\:\mathrm{parts}\:\mathrm{u}=\mathrm{tlnt}\:\mathrm{and}\:\mathrm{v}^{'\:} =\mathrm{e}^{−\mathrm{t}} \\ $$$$=\left[−\mathrm{e}^{−\mathrm{t}} \left(\mathrm{tlnt}\right)\right]_{\mathrm{0}} ^{\infty} −\int_{\mathrm{0}} ^{\infty} \left(\mathrm{lnt}+\mathrm{1}\right)\left(−\mathrm{e}^{−\mathrm{t}} \right)\mathrm{dt} \\ $$$$=\mathrm{0}+\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{t}} \left(\mathrm{1}+\mathrm{lnt}\right)\mathrm{dt}\:=\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{t}} \:\mathrm{dt}\:+\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{t}} \mathrm{lnt}\:\mathrm{dt} \\ $$$$=\mathrm{1}−\gamma \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com