Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 150804 by mathdanisur last updated on 15/Aug/21

Answered by aleks041103 last updated on 15/Aug/21

Let P=(b−a)(c−a)(d−a)(c−b)(d−b)(d−c).  Obviously P  is the product of all  possible differences between a,b,c,d.  1. Divisibility by 3, i.e. 3∣P.  If any two of the four numbers  have the same remainder when divided  by 3, their difference will have a  remainder 0 and therefore it will be divisible  by 3. Therefore 3∣P.  Since there are exactly 3 possible   remainders and we have 4 numbers,  it′s unavoidable to have at least two  numbers with the same remainder.  Therefore 3∣P.  2. Divisibility by 4, i.e. 4∣P.  The same argument as in 1. shows   that if 2 of the 4 numbers have the  same remainder when divided by 4,  then 4∣P.  Let all of the 4 numbers have different  remainders. Then without any restrictions  let  a=4A  b=4B+1  c=4C+2  d=4D+3  Then:  P=(4(B−A)+1)(4(C−A)+2)(4(D−A)+3)(4(C−B)+1)(4(D−B)+2)(4(D−C)+1)  But 4(C−A)+2=2(2(C−A)+1) and  4(D−B)+2=2(2(D−B)+1). Then  P=4(4(B−A)+1)(4(D−A)+3)(4(C−B)+1)(4(D−C)+1)(2(C−A)+1)(2(D−B)+1)  Therefore 4∣P.  3. Divisibility by 12.  From 1. and 2. we get:  3∣P and 4∣P and LCM(3,4)=12  ⇒12∣P

$${Let}\:{P}=\left({b}−{a}\right)\left({c}−{a}\right)\left({d}−{a}\right)\left({c}−{b}\right)\left({d}−{b}\right)\left({d}−{c}\right). \\ $$$${Obviously}\:{P}\:\:{is}\:{the}\:{product}\:{of}\:{all} \\ $$$${possible}\:{differences}\:{between}\:{a},{b},{c},{d}. \\ $$$$\mathrm{1}.\:{Divisibility}\:{by}\:\mathrm{3},\:{i}.{e}.\:\mathrm{3}\mid{P}. \\ $$$${If}\:{any}\:{two}\:{of}\:{the}\:{four}\:{numbers} \\ $$$${have}\:{the}\:{same}\:{remainder}\:{when}\:{divided} \\ $$$${by}\:\mathrm{3},\:{their}\:{difference}\:{will}\:{have}\:{a} \\ $$$${remainder}\:\mathrm{0}\:{and}\:{therefore}\:{it}\:{will}\:{be}\:{divisible} \\ $$$${by}\:\mathrm{3}.\:{Therefore}\:\mathrm{3}\mid{P}. \\ $$$${Since}\:{there}\:{are}\:{exactly}\:\mathrm{3}\:{possible}\: \\ $$$${remainders}\:{and}\:{we}\:{have}\:\mathrm{4}\:{numbers}, \\ $$$${it}'{s}\:{unavoidable}\:{to}\:{have}\:{at}\:{least}\:{two} \\ $$$${numbers}\:{with}\:{the}\:{same}\:{remainder}. \\ $$$${Therefore}\:\mathrm{3}\mid{P}. \\ $$$$\mathrm{2}.\:{Divisibility}\:{by}\:\mathrm{4},\:{i}.{e}.\:\mathrm{4}\mid{P}. \\ $$$${The}\:{same}\:{argument}\:{as}\:{in}\:\mathrm{1}.\:{shows}\: \\ $$$${that}\:{if}\:\mathrm{2}\:{of}\:{the}\:\mathrm{4}\:{numbers}\:{have}\:{the} \\ $$$${same}\:{remainder}\:{when}\:{divided}\:{by}\:\mathrm{4}, \\ $$$${then}\:\mathrm{4}\mid{P}. \\ $$$${Let}\:{all}\:{of}\:{the}\:\mathrm{4}\:{numbers}\:{have}\:{different} \\ $$$${remainders}.\:{Then}\:{without}\:{any}\:{restrictions} \\ $$$${let} \\ $$$${a}=\mathrm{4}{A} \\ $$$${b}=\mathrm{4}{B}+\mathrm{1} \\ $$$${c}=\mathrm{4}{C}+\mathrm{2} \\ $$$${d}=\mathrm{4}{D}+\mathrm{3} \\ $$$${Then}: \\ $$$${P}=\left(\mathrm{4}\left({B}−{A}\right)+\mathrm{1}\right)\left(\mathrm{4}\left({C}−{A}\right)+\mathrm{2}\right)\left(\mathrm{4}\left({D}−{A}\right)+\mathrm{3}\right)\left(\mathrm{4}\left({C}−{B}\right)+\mathrm{1}\right)\left(\mathrm{4}\left({D}−{B}\right)+\mathrm{2}\right)\left(\mathrm{4}\left({D}−{C}\right)+\mathrm{1}\right) \\ $$$${But}\:\mathrm{4}\left({C}−{A}\right)+\mathrm{2}=\mathrm{2}\left(\mathrm{2}\left({C}−{A}\right)+\mathrm{1}\right)\:{and} \\ $$$$\mathrm{4}\left({D}−{B}\right)+\mathrm{2}=\mathrm{2}\left(\mathrm{2}\left({D}−{B}\right)+\mathrm{1}\right).\:{Then} \\ $$$${P}=\mathrm{4}\left(\mathrm{4}\left({B}−{A}\right)+\mathrm{1}\right)\left(\mathrm{4}\left({D}−{A}\right)+\mathrm{3}\right)\left(\mathrm{4}\left({C}−{B}\right)+\mathrm{1}\right)\left(\mathrm{4}\left({D}−{C}\right)+\mathrm{1}\right)\left(\mathrm{2}\left({C}−{A}\right)+\mathrm{1}\right)\left(\mathrm{2}\left({D}−{B}\right)+\mathrm{1}\right) \\ $$$${Therefore}\:\mathrm{4}\mid{P}. \\ $$$$\mathrm{3}.\:{Divisibility}\:{by}\:\mathrm{12}. \\ $$$${From}\:\mathrm{1}.\:{and}\:\mathrm{2}.\:{we}\:{get}: \\ $$$$\mathrm{3}\mid{P}\:{and}\:\mathrm{4}\mid{P}\:{and}\:{LCM}\left(\mathrm{3},\mathrm{4}\right)=\mathrm{12} \\ $$$$\Rightarrow\mathrm{12}\mid{P} \\ $$

Commented by mathdanisur last updated on 15/Aug/21

nice Ser thank you

$$\mathrm{nice}\:\mathrm{Ser}\:\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com