Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 151118 by mnjuly1970 last updated on 18/Aug/21

        ∫_0 ^( ∞) (( arctan((x/2))+arctan(2x))/(x^( 2) +1))=^? (π^( 2) /4)

$$\:\: \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{arctan}\left(\frac{{x}}{\mathrm{2}}\right)+{arctan}\left(\mathrm{2}{x}\right)}{{x}^{\:\mathrm{2}} +\mathrm{1}}\overset{?} {=}\frac{\pi^{\:\mathrm{2}} }{\mathrm{4}} \\ $$$$ \\ $$

Answered by Olaf_Thorendsen last updated on 18/Aug/21

I = ∫_0 ^∞ ((arctan((x/2))+arctan(2x))/(x^2 +1)) dx  Let u = (1/x) :  I = ∫_0 ^∞ ((arctan((1/(2u)))+arctan((2/u)))/(u^2 +1)) du  I = ∫_0 ^∞ (((π/2)−arctan(2u)+(π/2)−arctan((u/2)))/(u^2 +1)) du  I = ∫_0 ^∞ (π/(u^2 +1)) du−I  2I = π[arctanu]_0 ^∞  = (π^2 /2)  I = (π^2 /4)

$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{arctan}\left(\frac{{x}}{\mathrm{2}}\right)+\mathrm{arctan}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx} \\ $$$$\mathrm{Let}\:{u}\:=\:\frac{\mathrm{1}}{{x}}\:: \\ $$$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}{u}}\right)+\mathrm{arctan}\left(\frac{\mathrm{2}}{{u}}\right)}{{u}^{\mathrm{2}} +\mathrm{1}}\:{du} \\ $$$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\frac{\pi}{\mathrm{2}}−\mathrm{arctan}\left(\mathrm{2}{u}\right)+\frac{\pi}{\mathrm{2}}−\mathrm{arctan}\left(\frac{{u}}{\mathrm{2}}\right)}{{u}^{\mathrm{2}} +\mathrm{1}}\:{du} \\ $$$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\pi}{{u}^{\mathrm{2}} +\mathrm{1}}\:{du}−\mathrm{I} \\ $$$$\mathrm{2I}\:=\:\pi\left[\mathrm{arctan}{u}\right]_{\mathrm{0}} ^{\infty} \:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\mathrm{I}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$

Commented by puissant last updated on 18/Aug/21

monsieur arctan((x/2))+arctan(2x)=(π/2)  avec ca on avait directement le   resultat..

$${monsieur}\:{arctan}\left(\frac{{x}}{\mathrm{2}}\right)+{arctan}\left(\mathrm{2}{x}\right)=\frac{\pi}{\mathrm{2}} \\ $$$${avec}\:{ca}\:{on}\:{avait}\:{directement}\:{le}\: \\ $$$${resultat}.. \\ $$

Commented by Olaf_Thorendsen last updated on 18/Aug/21

Non.  arctan((x/2))+arctan((2/x)) = (π/2).  Deja quand x tend vers l′infini  par exemple, vous voyez bien que  votre formule est fausse.

$$\mathrm{Non}. \\ $$$$\mathrm{arctan}\left(\frac{{x}}{\mathrm{2}}\right)+\mathrm{arctan}\left(\frac{\mathrm{2}}{{x}}\right)\:=\:\frac{\pi}{\mathrm{2}}. \\ $$$$\mathrm{Deja}\:\mathrm{quand}\:{x}\:\mathrm{tend}\:\mathrm{vers}\:\mathrm{l}'\mathrm{infini} \\ $$$$\mathrm{par}\:\mathrm{exemple},\:\mathrm{vous}\:\mathrm{voyez}\:\mathrm{bien}\:\mathrm{que} \\ $$$$\mathrm{votre}\:\mathrm{formule}\:\mathrm{est}\:\mathrm{fausse}. \\ $$

Commented by mnjuly1970 last updated on 18/Aug/21

      very nice mr olaf...

$$\:\:\:\:\:\:{very}\:{nice}\:{mr}\:{olaf}... \\ $$

Commented by puissant last updated on 18/Aug/21

oui monsieur vous avez raison car  arctan(x)+arctan((1/x))=(π/2)sgn(x)..

$${oui}\:{monsieur}\:{vous}\:{avez}\:{raison}\:{car} \\ $$$${arctan}\left({x}\right)+{arctan}\left(\frac{\mathrm{1}}{{x}}\right)=\frac{\pi}{\mathrm{2}}{sgn}\left({x}\right).. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com