Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 151162 by tabata last updated on 18/Aug/21

Commented by tabata last updated on 18/Aug/21

how can it solve

$${how}\:{can}\:{it}\:{solve} \\ $$

Commented by mr W last updated on 18/Aug/21

you see the solution x=1.  if you can′t see, no one can help you.

$${you}\:{see}\:{the}\:{solution}\:{x}=\mathrm{1}. \\ $$$${if}\:{you}\:{can}'{t}\:{see},\:{no}\:{one}\:{can}\:{help}\:{you}. \\ $$

Answered by Olaf_Thorendsen last updated on 18/Aug/21

6^x +1 = 8^x −27^(x−1)   • x = 1 and x = 2 are two almost  obvious solutions.    We have :  2^x 3^x +1 = (2^x )^3 −(((3^x )^3 )/(27))  Let a = 2^x  and b = 3^x .  ab+1 = a^3 −(b^3 /(27))  b^3 +27ab+27−27a^3  = 0  (b^3 +pb+q = 0)    This equation may be viewed as a  cubic in b.     Its discriminant is :  Δ_b (a) = −4p^3 −27q^2   Δ_b (a) = −4(27a)^3 −27(27−27a^3 )^2   Δ_b (a) = −27^3 (4a^3 +1−2a^3 +a^6 )  Δ_b (a) = −27^3 (1+a^3 )^2     wich is negative for all a except for  a = −1, when it is zero. This does not   correspond to a real value of x, hence  for all possible values of a there is a  unique real b satisfying the polynomial  which is :    b = 3(a−1).    By definition we have b = 3^(log_2 a) . So it  remains to solve 3^(log_2 a)  = 3(a−1).  By inspection we find the solutions  a = 2 and a = 4 corresponding to x = 1  and x = 2. These are the only solutions,  because such an exponential function  intersects any line in at most  two points.

$$\mathrm{6}^{{x}} +\mathrm{1}\:=\:\mathrm{8}^{{x}} −\mathrm{27}^{{x}−\mathrm{1}} \\ $$$$\bullet\:{x}\:=\:\mathrm{1}\:\mathrm{and}\:{x}\:=\:\mathrm{2}\:\mathrm{are}\:\mathrm{two}\:\mathrm{almost} \\ $$$$\mathrm{obvious}\:\mathrm{solutions}. \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{have}\:: \\ $$$$\mathrm{2}^{{x}} \mathrm{3}^{{x}} +\mathrm{1}\:=\:\left(\mathrm{2}^{{x}} \right)^{\mathrm{3}} −\frac{\left(\mathrm{3}^{{x}} \right)^{\mathrm{3}} }{\mathrm{27}} \\ $$$$\mathrm{Let}\:{a}\:=\:\mathrm{2}^{{x}} \:\mathrm{and}\:{b}\:=\:\mathrm{3}^{{x}} . \\ $$$${ab}+\mathrm{1}\:=\:{a}^{\mathrm{3}} −\frac{{b}^{\mathrm{3}} }{\mathrm{27}} \\ $$$${b}^{\mathrm{3}} +\mathrm{27}{ab}+\mathrm{27}−\mathrm{27}{a}^{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$\left({b}^{\mathrm{3}} +{pb}+{q}\:=\:\mathrm{0}\right) \\ $$$$ \\ $$$$\mathrm{This}\:\mathrm{equation}\:\mathrm{may}\:\mathrm{be}\:\mathrm{viewed}\:\mathrm{as}\:\mathrm{a} \\ $$$$\mathrm{cubic}\:\mathrm{in}\:{b}.\: \\ $$$$ \\ $$$$\mathrm{Its}\:\mathrm{discriminant}\:\mathrm{is}\:: \\ $$$$\Delta_{{b}} \left({a}\right)\:=\:−\mathrm{4}{p}^{\mathrm{3}} −\mathrm{27}{q}^{\mathrm{2}} \\ $$$$\Delta_{{b}} \left({a}\right)\:=\:−\mathrm{4}\left(\mathrm{27}{a}\right)^{\mathrm{3}} −\mathrm{27}\left(\mathrm{27}−\mathrm{27}{a}^{\mathrm{3}} \right)^{\mathrm{2}} \\ $$$$\Delta_{{b}} \left({a}\right)\:=\:−\mathrm{27}^{\mathrm{3}} \left(\mathrm{4}{a}^{\mathrm{3}} +\mathrm{1}−\mathrm{2}{a}^{\mathrm{3}} +{a}^{\mathrm{6}} \right) \\ $$$$\Delta_{{b}} \left({a}\right)\:=\:−\mathrm{27}^{\mathrm{3}} \left(\mathrm{1}+{a}^{\mathrm{3}} \right)^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{wich}\:\mathrm{is}\:\mathrm{negative}\:\mathrm{for}\:\mathrm{all}\:\mathrm{a}\:\mathrm{except}\:\mathrm{for} \\ $$$${a}\:=\:−\mathrm{1},\:\mathrm{when}\:\mathrm{it}\:\mathrm{is}\:\mathrm{zero}.\:\mathrm{This}\:\mathrm{does}\:\mathrm{not}\: \\ $$$$\mathrm{correspond}\:\mathrm{to}\:\mathrm{a}\:\mathrm{real}\:\mathrm{value}\:\mathrm{of}\:{x},\:\mathrm{hence} \\ $$$$\mathrm{for}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:{a}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{unique}\:\mathrm{real}\:{b}\:\mathrm{satisfying}\:\mathrm{the}\:\mathrm{polynomial} \\ $$$$\mathrm{which}\:\mathrm{is}\:: \\ $$$$ \\ $$$${b}\:=\:\mathrm{3}\left({a}−\mathrm{1}\right). \\ $$$$ \\ $$$$\mathrm{By}\:\mathrm{definition}\:\mathrm{we}\:\mathrm{have}\:{b}\:=\:\mathrm{3}^{\mathrm{log}_{\mathrm{2}} {a}} .\:\mathrm{So}\:\mathrm{it} \\ $$$$\mathrm{remains}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{3}^{\mathrm{log}_{\mathrm{2}} {a}} \:=\:\mathrm{3}\left({a}−\mathrm{1}\right). \\ $$$$\mathrm{By}\:\mathrm{inspection}\:\mathrm{we}\:\mathrm{find}\:\mathrm{the}\:\mathrm{solutions} \\ $$$${a}\:=\:\mathrm{2}\:\mathrm{and}\:{a}\:=\:\mathrm{4}\:\mathrm{corresponding}\:\mathrm{to}\:{x}\:=\:\mathrm{1} \\ $$$$\mathrm{and}\:{x}\:=\:\mathrm{2}.\:\mathrm{These}\:\mathrm{are}\:\mathrm{the}\:\mathrm{only}\:\mathrm{solutions}, \\ $$$$\mathrm{because}\:\mathrm{such}\:\mathrm{an}\:\mathrm{exponential}\:\mathrm{function} \\ $$$$\mathrm{intersects}\:\mathrm{any}\:\mathrm{line}\:\mathrm{in}\:\mathrm{at}\:\mathrm{most} \\ $$$$\mathrm{two}\:\mathrm{points}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com