Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 151246 by mathmax by abdo last updated on 19/Aug/21

find I=∫_0 ^(π/4) ln(cosx)dx and J=∫_0 ^(π/4) ln(sinx)dx

$$\mathrm{find}\:\mathrm{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{cosx}\right)\mathrm{dx}\:\mathrm{and}\:\mathrm{J}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{sinx}\right)\mathrm{dx} \\ $$

Answered by qaz last updated on 19/Aug/21

∫_0 ^(π/4) lnsin xdx  =(1/2)∫_0 ^(π/2) lnsin (x/2)dx  =(1/4)∫_0 ^(π/2) ln((1−cos x)/2)dx  =(1/4)∫_0 ^(π/2) ln(sin xtan (x/2))dx−(1/4)∫_0 ^(π/2) ln2dx  =−(π/8)ln2+(1/4)∫_0 ^(π/2) lntan (x/2)dx−(π/8)ln2  =−(π/4)ln2+(1/2)∫_0 ^(π/4) lntan xdx  =−(π/4)ln2+(1/2)∫_0 ^1 ((lnx)/(1+x^2 ))dx  =−(π/4)ln2+(1/2)Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^(2n) lnxdx  =−(π/4)ln2+(1/2)Σ_(n=0) ^∞ (((−1)^(n+1) )/((2n+1)^2 ))  =−(π/4)ln2−(1/2)G  −−−−−−−−−−−−−−−  ∫_0 ^(π/4) lncos xdx+∫_0 ^(π/4) lnsin xdx  =∫_0 ^(π/4) ln((1/2)sin 2x)dx  =∫_0 ^(π/4) ln(1/2)dx+(1/2)∫_0 ^(π/2) lnsin xdx  =−(π/2)ln2  ⇒∫_0 ^(π/4) lncos xdx=−(π/2)ln2−(−(π/4)ln2−(1/2)G)=(1/2)G−(π/4)ln2

$$\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{lnsin}\:\mathrm{xdx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{lnsin}\:\frac{\mathrm{x}}{\mathrm{2}}\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}{\mathrm{2}}\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\left(\mathrm{sin}\:\mathrm{xtan}\:\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{dx}−\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln2dx} \\ $$$$=−\frac{\pi}{\mathrm{8}}\mathrm{ln2}+\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{lntan}\:\frac{\mathrm{x}}{\mathrm{2}}\mathrm{dx}−\frac{\pi}{\mathrm{8}}\mathrm{ln2} \\ $$$$=−\frac{\pi}{\mathrm{4}}\mathrm{ln2}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{lntan}\:\mathrm{xdx} \\ $$$$=−\frac{\pi}{\mathrm{4}}\mathrm{ln2}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{lnx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$$$=−\frac{\pi}{\mathrm{4}}\mathrm{ln2}+\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{2n}} \mathrm{lnxdx} \\ $$$$=−\frac{\pi}{\mathrm{4}}\mathrm{ln2}+\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=−\frac{\pi}{\mathrm{4}}\mathrm{ln2}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{G} \\ $$$$−−−−−−−−−−−−−−− \\ $$$$\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{lncos}\:\mathrm{xdx}+\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{lnsin}\:\mathrm{xdx} \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2x}\right)\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{ln}\frac{\mathrm{1}}{\mathrm{2}}\mathrm{dx}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{lnsin}\:\mathrm{xdx} \\ $$$$=−\frac{\pi}{\mathrm{2}}\mathrm{ln2} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{lncos}\:\mathrm{xdx}=−\frac{\pi}{\mathrm{2}}\mathrm{ln2}−\left(−\frac{\pi}{\mathrm{4}}\mathrm{ln2}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{G}\right)=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{G}−\frac{\pi}{\mathrm{4}}\mathrm{ln2} \\ $$

Commented by peter frank last updated on 19/Aug/21

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com