All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 151256 by pticantor last updated on 19/Aug/21
An=2n+3n+4n+5nBn=100n+101n+102n+103n1)findvaluesofnwhile7∣An2)showthatBn≡An[7]
Answered by Rasheed.Sindhi last updated on 20/Aug/21
1)23≡1(mod7)⇒26≡1(mod7)⇒26k≡1(mod7)36≡1(mod7)⇒36k≡1(mod7)43≡1(mod7)⇒46≡1(mod7)⇒46k≡1(mod7)56≡1(mod7)⇒56k≡1(mod7){(26k≡1(mod7))×2u(36k≡1(mod7))×3u(46k≡1(mod7))×4u(56k≡1(mod7))×5u;u∈{0,1,2,...,5}⇒{26k+u≡2u(mod7)36k+u≡3u(mod7)46k+u≡4u(mod7)56k+u≡5u(mod7);u∈{0,1,2,...,5}n=6k+u⇒An=2n+3n+4n+5n=26k+u+36k+u+46k+u+56k+u≡2u+3u+4u+5u(mod7)u=1:21+31+41+51=14=7×2✓u=2:22+32+42+52=54⇒7∤54×...u=1,3,5satisfytheabovecongruenceHence∴Forn=6k+1,6k+3,6k+5,7∣An∀k∈{0,1,2,...}
2)100≡2(mod7)⇒100n≡2n(mod7)...(i)101≡3(mod7)⇒101n≡3n(mod7)...(ii)102≡4(mod7)⇒102n≡4n(mod7)...(iii)103≡5(mod7)⇒103n≡5n(mod7)...(iv)(i)+(ii)+(iii)+(iv):100n+101n+102n+103n≡2n+3n+4n+5n(mod7)Bn≡An(mod7)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com