Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 151256 by pticantor last updated on 19/Aug/21

 A_n =2^n +3^n +4^n +5^n   B_n =100^n +101^n +102^n +103^n   1)find values of n while 7∣A_n   2) show that B_n ≡A_n [7 ]

An=2n+3n+4n+5nBn=100n+101n+102n+103n1)findvaluesofnwhile7An2)showthatBnAn[7]

Answered by Rasheed.Sindhi last updated on 20/Aug/21

1)  2^3 ≡1(mod 7)⇒2^6 ≡1(mod 7)⇒2^(6k) ≡1(mod 7)  3^6 ≡1(mod 7)                                   ⇒3^(6k) ≡1(mod 7)  4^3 ≡1(mod 7)⇒4^6 ≡1(mod 7)⇒4^(6k) ≡1(mod 7)  5^6 ≡1(mod 7)                                   ⇒5^(6k) ≡1(mod 7)   { ((( 2^(6k) ≡1(mod 7) )×2^u )),((( 3^(6k) ≡1(mod 7) )×3^u )),((( 4^(6k) ≡1(mod 7) )×4^u )),((( 5^(6k) ≡1(mod 7) )×5^u )) :}  ;u∈{0,1,2,...,5}    ⇒ { ((2^(6k+u) ≡2^u (mod 7))),((3^(6k+u) ≡3^u (mod 7))),((4^(6k+u) ≡4^u (mod 7))),((5^(6k+u) ≡5^u (mod 7))) :}  ;u∈{0,1,2,...,5}  n=6k+u⇒  A_n =2^n +3^n +4^n +5^n =  2^(6k+u) +3^(6k+u) +4^(6k+u) +5^(6k+u)                              ≡2^u +3^u +4^u +5^u (mod 7)  u=1: 2^1 +3^1 +4^1 +5^1 =14=7×2 ✓  u=2: 2^2 +3^2 +4^2 +5^2 =54⇒7∤54 ×  ...  u=1,3,5 satisfy the above congruence  Hence  ∴ For n=6k+1,6k+3,6k+5 , 7 ∣ A_n          ∀k∈{0,1,2,...}

1)231(mod7)261(mod7)26k1(mod7)361(mod7)36k1(mod7)431(mod7)461(mod7)46k1(mod7)561(mod7)56k1(mod7){(26k1(mod7))×2u(36k1(mod7))×3u(46k1(mod7))×4u(56k1(mod7))×5u;u{0,1,2,...,5}{26k+u2u(mod7)36k+u3u(mod7)46k+u4u(mod7)56k+u5u(mod7);u{0,1,2,...,5}n=6k+uAn=2n+3n+4n+5n=26k+u+36k+u+46k+u+56k+u2u+3u+4u+5u(mod7)u=1:21+31+41+51=14=7×2u=2:22+32+42+52=54754×...u=1,3,5satisfytheabovecongruenceHenceForn=6k+1,6k+3,6k+5,7Ank{0,1,2,...}

Answered by Rasheed.Sindhi last updated on 20/Aug/21

2)  100≡2(mod 7)⇒100^n ≡2^n (mod 7)...(i)  101≡3(mod 7)⇒101^n ≡3^n (mod 7)...(ii)  102≡4(mod 7)⇒102^n ≡4^n (mod 7)...(iii)  103≡5(mod 7)⇒103^n ≡5^n (mod 7)...(iv)  (i)+(ii)+(iii)+(iv):  100^n +101^n +102^n +103^n                ≡2^n +3^n +4^n +5^n (mod 7)           B_n ≡A_n (mod 7)

2)1002(mod7)100n2n(mod7)...(i)1013(mod7)101n3n(mod7)...(ii)1024(mod7)102n4n(mod7)...(iii)1035(mod7)103n5n(mod7)...(iv)(i)+(ii)+(iii)+(iv):100n+101n+102n+103n2n+3n+4n+5n(mod7)BnAn(mod7)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com