Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 151421 by peter frank last updated on 21/Aug/21

∫_0 ^(π/4) log (1+tan x)dx

0π4log(1+tanx)dx

Commented by puissant last updated on 21/Aug/21

x=(π/4)−t → dx=−dt  Q=∫_(π/4) ^0 ln(1+tan((π/4)−t))(−dt)  =∫_0 ^(π/4) ln(1+((1−tant)/(1+tant)))dt  =∫_0 ^(π/4) ln(((1+tant)/(1+tant))+((1−tant)/(1+tant)))dt  ⇒ Q=∫_0 ^(π/4) ln((2/(1+tant)))dt  ⇒ Q=∫_0 ^(π/4) ln2dx−∫_0 ^(π/4) ln(1+tant)dt  ⇒ 2Q=(π/4)ln2            ∵∴  Q=(π/8)ln2...

x=π4tdx=dtQ=π40ln(1+tan(π4t))(dt)=0π4ln(1+1tant1+tant)dt=0π4ln(1+tant1+tant+1tant1+tant)dtQ=0π4ln(21+tant)dtQ=0π4ln2dx0π4ln(1+tant)dt2Q=π4ln2∵∴Q=π8ln2...

Commented by peter frank last updated on 21/Aug/21

thank you

thankyou

Answered by peter frank last updated on 21/Aug/21

x=(π/4)−θ  dx=−dθ  (0,(π/4))⇔((π/4),0)  ∫_0 ^(π/4) log [1+tan ((π/4)−θ)]dθ  ∫_0 ^(π/4) log [1+((tan (π/4)−tan θ)/(1+tan (π/4)tan θ))]  ∫_0 ^(π/4) log[ (2/(1+tan θ))]dθ  ∫_0 ^(π/4) log 2dθ−∫_0 ^(π/4) log (1+tan θ)  2I=log 2[θ]_0 ^(π/4)   I=(π/8)log 2

x=π4θdx=dθ(0,π4)(π4,0)0π4log[1+tan(π4θ)]dθ0π4log[1+tanπ4tanθ1+tanπ4tanθ]0π4log[21+tanθ]dθ0π4log2dθ0π4log(1+tanθ)2I=log2[θ]0π4I=π8log2

Answered by mathmax by abdo last updated on 21/Aug/21

f(a)=∫_0 ^(π/4) log(1+atanx)dx     (a>0) ⇒  f^′ (a)=∫_0 ^(π/4) ((tanx)/(1+atanx))=(1/a)∫_0 ^(π/4)  ((1+atanx−1)/(1+atanx))dx  =(π/(4a))−(1/a)∫_0 ^(π/4)  (dx/(1+atanx)) [we have  ∫_0 ^(π/4)  (dx/(1+atanx)) =_(tanx=t)   ∫_0 ^(1 )  (dt/((1+t^2 )(1+at)))  F(t)=(1/((at+1)(t^2  +1)))=(α/(at+1))+((mt+n)/(t^2  +1))  α=(1/((1/a^2 )+1))=(a^2 /(1+a^2 ))  lim_(t→+∞) tF(t)=(α/a) +m ⇒m=−(α/a)=−(a/(1+a^2 ))  ⇒F(t)=(a^2 /((1+a^2 )(at+1)))+((−(a/(1+a^2 ))t +n)/(t^2  +1))  F(0)=(a^2 /(1+a^2 )) +n=1 ⇒n=1−(a^2 /(1+a^2 ))=(1/(1+a^2 )) ⇒  F(t)=(a^2 /((a^2  +1)(at+1)))+((−(a/(a^2  +1))t+(1/(1+a^2 )))/(t^2  +1))  ⇒∫_0 ^1  F(t)dt=(a^2 /((a^2  +1)))∫_0 ^1  (dt/(at+1))−(1/(a^2  +1))∫_0 ^(1 ) ((at−1)/(t^2  +1))dt  =(a/(a^2  +1))[ln(at+1)]_0 ^1 −(a/(2(a^2  +1)))[ln(t^2  +1)]_0 ^1  +(1/(a^2  +1))(π/4)  =((aln(1+a))/(a^2  +1))−((ln2)/2)×(a/(a^2 +1)) +(π/(4(a^2  +1))) ⇒  f^′ (a)=(π/(4a))−((ln(1+a))/(a^2  +1))+((ln2)/(2(a^(2 ) +1))) −(π/(4a(a^2  +1)))  f(1)=f(1)−f(0)=∫_0 ^1  f^′ (a)da=∫_0 ^(π/4) log(1+tant)dt  =∫_0 ^1 (π/(4a))(1−(1/(a^2  +1)))da−∫_0 ^1  ((ln(1+a))/(a^2  +1))da+((ln2)/2)∫_0 ^1  (da/(1+a^2 ))  =(π/4)∫_0 ^1 (a/(a^2  +1))da−∫_0 ^1  ((ln(1+a))/(1+a^2 ))da+(π/4)×((ln2)/2)  =(π/8)[ln(a^2 +1)]_0 ^1 +((πln2)/8)−∫_0 ^1  ((ln(1+a))/(1+a^2 ))da (a=tanθ)  =((πln(2))/8)+((πln2)/8)−∫_0 ^(π/4)  ((ln(1+tanθ))/(1+tan^2 θ))(1+tan^2 θ)dθ  =((πln2)/4)−I ⇒2I=((πln2)/4) ⇒I=(π/8)ln(2) ⇒  ∫_0 ^(π/4) ln(1+tanθ)dθ=(π/8)ln(2)

f(a)=0π4log(1+atanx)dx(a>0)f(a)=0π4tanx1+atanx=1a0π41+atanx11+atanxdx=π4a1a0π4dx1+atanx[wehave0π4dx1+atanx=tanx=t01dt(1+t2)(1+at)F(t)=1(at+1)(t2+1)=αat+1+mt+nt2+1α=11a2+1=a21+a2limt+tF(t)=αa+mm=αa=a1+a2F(t)=a2(1+a2)(at+1)+a1+a2t+nt2+1F(0)=a21+a2+n=1n=1a21+a2=11+a2F(t)=a2(a2+1)(at+1)+aa2+1t+11+a2t2+101F(t)dt=a2(a2+1)01dtat+11a2+101at1t2+1dt=aa2+1[ln(at+1)]01a2(a2+1)[ln(t2+1)]01+1a2+1π4=aln(1+a)a2+1ln22×aa2+1+π4(a2+1)f(a)=π4aln(1+a)a2+1+ln22(a2+1)π4a(a2+1)f(1)=f(1)f(0)=01f(a)da=0π4log(1+tant)dt=01π4a(11a2+1)da01ln(1+a)a2+1da+ln2201da1+a2=π401aa2+1da01ln(1+a)1+a2da+π4×ln22=π8[ln(a2+1)]01+πln2801ln(1+a)1+a2da(a=tanθ)=πln(2)8+πln280π4ln(1+tanθ)1+tan2θ(1+tan2θ)dθ=πln24I2I=πln24I=π8ln(2)0π4ln(1+tanθ)dθ=π8ln(2)

Commented by peter frank last updated on 21/Aug/21

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com