Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 151425 by peter frank last updated on 21/Aug/21

∫_0 ^(π/2) (dx/((cos x+(√3) sin x)^2 ))dx=(1/( (√3)))

0π2dx(cosx+3sinx)2dx=13

Answered by Olaf_Thorendsen last updated on 21/Aug/21

I = ∫_0 ^(π/2) (dx/((cosx+(√3)sinx)^2 ))  I = (1/4)∫_0 ^(π/2) (dx/(((1/2)cosx+((√3)/2)sinx)^2 ))  I = (1/4)∫_0 ^(π/2) (dx/((cos(π/3)cosx+sin(π/3)sinx)^2 ))  I = (1/4)∫_0 ^(π/2) (dx/(cos^2 (x−(π/3))))  I = (1/4)∫_(−(π/3)) ^(π/6) (du/(cos^2 u))  I = (1/4)[tanu]_(−(π/3)) ^(π/6)   I = (1/4)((1/( (√3)))+(√3)) = (1/( (√3)))

I=0π2dx(cosx+3sinx)2I=140π2dx(12cosx+32sinx)2I=140π2dx(cosπ3cosx+sinπ3sinx)2I=140π2dxcos2(xπ3)I=14π3π6ducos2uI=14[tanu]π3π6I=14(13+3)=13

Answered by MJS_new last updated on 21/Aug/21

∫(dx/((cos x +(√3)sin x)^2 ))=       [t=tan x → dx=cos^2  x dt]  =∫(dt/(((√3)t+1)^2 ))=−(1/(3t+(√3)))=(1/( (√3)+3tan x))+C  [(1/( (√3)+3tan x))]_0 ^(π/2) =((√3)/3)

dx(cosx+3sinx)2=[t=tanxdx=cos2xdt]=dt(3t+1)2=13t+3=13+3tanx+C[13+3tanx]0π/2=33

Terms of Service

Privacy Policy

Contact: info@tinkutara.com