Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 151447 by mnjuly1970 last updated on 21/Aug/21

        prove that...     I:= ∫_0 ^( ∞) (( ln (x ))/(1+ e^( x) )) dx= ((−1)/2) ln^( 2) (2) ..■

provethat...I:=0ln(x)1+exdx=12ln2(2)..

Answered by Lordose last updated on 21/Aug/21

  I = ∫_0 ^( ∞) ((ln(x))/(1+e^x ))dx =^(u=e^(−x) ) ∫_0 ^( 1) ((uln(ln((1/u))))/(1+u))∙(du/u)  I = ∫_0 ^( 1) ((ln(ln((1/u))))/(1+u))du = ∣(∂/∂a)∫_0 ^( 1) ((ln^a ((1/u)))/(1+u))du∣_(a=1)   I(a) = ∫_0 ^( 1) (((ln((1/u)))^a )/(1+u))du =^(x=−ln(u)) ∫_0 ^( ∞) ((x^a e^(−x) )/(1+e^(−x) ))dx  I(a) = ∫_0 ^( ∞) x^a Σ_(n=1) ^∞ (−1)^(k+1) e^(−kx) dx  I(a) =^(y=kx)  Σ_(k=1) ^∞ (((−1)^(k+1) )/k^(a+1) )∫_0 ^( ∞) y^a e^(−y) dy = Σ_(k=1) ^∞ (((−1)^(k+1) )/k^(a+1) )𝚪(a+1)  I(a) = 𝛈(a+1)𝚪(a+1)  I′(a) = 𝛈(a+1)𝚪(a+1)𝛙(a+1) + 𝛈′(a+1)𝚪(a+1)  I = lim_(a→0) (I′(a))  𝚿(1)=−𝛄,𝛈(1)=ln(2), 𝛈′(1)=𝛄ln(2)−((ln^2 (2))/2)  Ω = −𝛄ln(2)+𝛄ln(2)−((ln^2 (2))/2) = −((ln^2 (2))/2) ▲▲▲  ∅sE

I=0ln(x)1+exdx=u=ex01uln(ln(1u))1+uduuI=01ln(ln(1u))1+udu=a01lna(1u)1+udua=1I(a)=01(ln(1u))a1+udu=x=ln(u)0xaex1+exdxI(a)=0xan=1(1)k+1ekxdxI(a)=y=kxk=1(1)k+1ka+10yaeydy=k=1(1)k+1ka+1Γ(a+1)I(a)=η(a+1)Γ(a+1)I(a)=η(a+1)Γ(a+1)ψ(a+1)+η(a+1)Γ(a+1)I=lima0(I(a))Ψ(1)=γ,η(1)=ln(2),η(1)=γln(2)ln2(2)2Ω=γln(2)+γln(2)ln2(2)2=ln2(2)2sE

Commented by mnjuly1970 last updated on 21/Aug/21

very nice master lordose..

verynicemasterlordose..

Commented by Tawa11 last updated on 22/Aug/21

And    Q151641

AndQ151641

Terms of Service

Privacy Policy

Contact: info@tinkutara.com