All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 151447 by mnjuly1970 last updated on 21/Aug/21
provethat...I:=∫0∞ln(x)1+exdx=−12ln2(2)..◼
Answered by Lordose last updated on 21/Aug/21
I=∫0∞ln(x)1+exdx=u=e−x∫01uln(ln(1u))1+u⋅duuI=∫01ln(ln(1u))1+udu=∣∂∂a∫01lna(1u)1+udu∣a=1I(a)=∫01(ln(1u))a1+udu=x=−ln(u)∫0∞xae−x1+e−xdxI(a)=∫0∞xa∑∞n=1(−1)k+1e−kxdxI(a)=y=kx∑∞k=1(−1)k+1ka+1∫0∞yae−ydy=∑∞k=1(−1)k+1ka+1Γ(a+1)I(a)=η(a+1)Γ(a+1)I′(a)=η(a+1)Γ(a+1)ψ(a+1)+η′(a+1)Γ(a+1)I=lima→0(I′(a))Ψ(1)=−γ,η(1)=ln(2),η′(1)=γln(2)−ln2(2)2Ω=−γln(2)+γln(2)−ln2(2)2=−ln2(2)2▴▴▴∅sE
Commented by mnjuly1970 last updated on 21/Aug/21
verynicemasterlordose..
Commented by Tawa11 last updated on 22/Aug/21
AndQ151641
Terms of Service
Privacy Policy
Contact: info@tinkutara.com