Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 151448 by mathdanisur last updated on 21/Aug/21

Prove that:  Artimetric mean ≥ Geometric mean  ((a + b)/2) ≥ (√(ab))

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\boldsymbol{\mathrm{A}}\mathrm{rtimetric}\:\mathrm{mean}\:\geqslant\:\boldsymbol{\mathrm{G}}\mathrm{eometric}\:\mathrm{mean} \\ $$$$\frac{\mathrm{a}\:+\:\mathrm{b}}{\mathrm{2}}\:\geqslant\:\sqrt{\mathrm{ab}} \\ $$

Commented by puissant last updated on 21/Aug/21

∀ (a,b)∈R^2 ,  ((√a)−(√b))^2 ≥0  ⇒ a−2(√(ab))+b≥0  ⇒ 2(√(ab))≤a+b  ⇒ (√(ab)) ≤ ((a+b)/2)..

$$\forall\:\left({a},{b}\right)\in\mathbb{R}^{\mathrm{2}} , \\ $$$$\left(\sqrt{{a}}−\sqrt{{b}}\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\Rightarrow\:{a}−\mathrm{2}\sqrt{{ab}}+{b}\geqslant\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{2}\sqrt{{ab}}\leqslant{a}+{b} \\ $$$$\Rightarrow\:\sqrt{{ab}}\:\leqslant\:\frac{{a}+{b}}{\mathrm{2}}.. \\ $$

Commented by mathdanisur last updated on 21/Aug/21

Thank you Ser

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Ser} \\ $$

Answered by nimnim last updated on 21/Aug/21

This inequality hold when a and b are positive.  Since a and b are positive,   (√a)=x and (√b)=y   (say)  then (x−y)^2 ≥0    ⇒ x^2 +y^2 −2xy≥0    ⇒ ((x^2 +y^2 )/2)≥xy    ⇒ ((a+b)/2)≥(√(ab))  ★

$$\mathrm{This}\:\mathrm{inequality}\:\mathrm{hold}\:\mathrm{when}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{are}\:\mathrm{positive}. \\ $$$$\mathrm{Since}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{are}\:\mathrm{positive}, \\ $$$$\:\sqrt{\mathrm{a}}=\mathrm{x}\:\mathrm{and}\:\sqrt{\mathrm{b}}=\mathrm{y}\:\:\:\left(\mathrm{say}\right) \\ $$$$\mathrm{then}\:\left(\mathrm{x}−\mathrm{y}\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\:\:\Rightarrow\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{2xy}\geqslant\mathrm{0} \\ $$$$\:\:\Rightarrow\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }{\mathrm{2}}\geqslant\mathrm{xy} \\ $$$$\:\:\Rightarrow\:\frac{\mathrm{a}+\mathrm{b}}{\mathrm{2}}\geqslant\sqrt{\mathrm{ab}}\:\:\bigstar \\ $$

Commented by mathdanisur last updated on 21/Aug/21

Thank you Ser

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Ser} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com