Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 151504 by talminator2856791 last updated on 21/Aug/21

                     ∫_0 ^( ∞)  ((ln x)/( (√x) (√(x+1)) (√(2x+1)))) dx

0lnxxx+12x+1dx

Answered by Kamel last updated on 21/Aug/21

    Ω=∫_0 ^(+∞) ((Ln(x)dx)/( (√x)(√(1+x))(√(1+2x))))  Ω=^(x=(t/2)) ∫_0 ^(+∞) ((Ln(t)−Ln(2))/( (√t)(√(2+t))(√(1+t))))dt=−∫_0 ^(+∞) ((Ln(t)dt)/( (√t)(√(1+2t))(√(1+t))))−2∫_0 ^(+∞) ((Ln(2)du)/( (√(u^2 +2))(√(1+u^2 ))))  ∴ Ω=Ln(2)∫_0 ^(+∞) (du/( (√(1+u^2 ))(√(1+2u^2 ))))        =^(u=tg(t)) Ln(2)∫_0 ^(π/2) (dt/( (√(cos^2 (t)+2sin^2 (t)))))           =Ln(2)∫_0 ^(π/2) (dt/( (√(2−cos^2 (t)))))=^(θ=(π/2)−t) ((Ln(2))/( (√2)))∫_0 ^(π/2) (dθ/( (√(1−(1/2)sin^2 (θ)))))          =((K((1/2)))/( (√2)))Ln(2)

Ω=0+Ln(x)dxx1+x1+2xΩ=x=t20+Ln(t)Ln(2)t2+t1+tdt=0+Ln(t)dtt1+2t1+t20+Ln(2)duu2+21+u2Ω=Ln(2)0+du1+u21+2u2=u=tg(t)Ln(2)0π2dtcos2(t)+2sin2(t)=Ln(2)0π2dt2cos2(t)=θ=π2tLn(2)20π2dθ112sin2(θ)=K(12)2Ln(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com