All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 151504 by talminator2856791 last updated on 21/Aug/21
∫0∞lnxxx+12x+1dx
Answered by Kamel last updated on 21/Aug/21
Ω=∫0+∞Ln(x)dxx1+x1+2xΩ=x=t2∫0+∞Ln(t)−Ln(2)t2+t1+tdt=−∫0+∞Ln(t)dtt1+2t1+t−2∫0+∞Ln(2)duu2+21+u2∴Ω=Ln(2)∫0+∞du1+u21+2u2=u=tg(t)Ln(2)∫0π2dtcos2(t)+2sin2(t)=Ln(2)∫0π2dt2−cos2(t)=θ=π2−tLn(2)2∫0π2dθ1−12sin2(θ)=K(12)2Ln(2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com