Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 151559 by peter frank last updated on 21/Aug/21

prove that  (1+cos θ+isin θ)^n   + (1+cos θ−isin θ)^n =2^(n+1) cos (θ/2)cos ((nθ)/2)

provethat(1+cosθ+isinθ)n+(1+cosθisinθ)n=2n+1cosθ2cosnθ2

Answered by Olaf_Thorendsen last updated on 22/Aug/21

S_n  = (1+cosθ+isinθ)^n +(1+cosθ−isinθ)^n   S_n  = (1+e^(iθ) )^n +(1+e^(−iθ) )^n   S_n  = (1+e^(iθ) )^n +conj((1+e^(iθ) )^n )  S_n  = 2Re(1+e^(iθ) )^n   S_n  = 2Re(e^(i((nθ)/2)) (e^(i(θ/2)) +e^(−i(θ/2)) )^n )  S_n  = 2Re(e^(i((nθ)/2)) 2^n cos^n ((θ/2)))  S_n  = 2^(n+1) cos(((nθ)/2))cos^n ((θ/2))

Sn=(1+cosθ+isinθ)n+(1+cosθisinθ)nSn=(1+eiθ)n+(1+eiθ)nSn=(1+eiθ)n+conj((1+eiθ)n)Sn=2Re(1+eiθ)nSn=2Re(einθ2(eiθ2+eiθ2)n)Sn=2Re(einθ22ncosn(θ2))Sn=2n+1cos(nθ2)cosn(θ2)

Commented by peter frank last updated on 22/Aug/21

thank you

thankyou

Answered by peter frank last updated on 22/Aug/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com