Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 151630 by mathlove last updated on 22/Aug/21

Answered by qaz last updated on 22/Aug/21

Σ_(n=1) ^∞ (H_n /n^2 )  =∫_0 ^1 (1/(1−x))Σ_(n=1) ^∞ ((1−x^n )/n^2 )dx  =∫_0 ^1 (((π^2 /6)−Li_2 (x))/(1−x))dx  =∫_0 ^1 (((π^2 /6)−Li_2 (1−x))/x)dx  =[(π^2 /6)−Li_2 (1−x)]lnx∣_0 ^1 −∫_0 ^1 ((ln^2 x)/(1−x))dx  =−Σ_(n=0) ^∞ ∫_0 ^1 x^n ln^2 xdx  =2Σ_(n=0) ^∞ (1/((n+1)^3 ))  =2ζ(3)

n=1Hnn2=0111xn=11xnn2dx=01π26Li2(x)1xdx=01π26Li2(1x)xdx=[π26Li2(1x)]lnx0101ln2x1xdx=n=001xnln2xdx=2n=01(n+1)3=2ζ(3)

Answered by Olaf_Thorendsen last updated on 22/Aug/21

• Σ_(k=0) ^(n−1) x^k  = ((1−x^n )/(1−x))  ⇒ ∫_0 ^1 Σ_(k=0) ^(n−1) x^k  dx = ∫_0 ^1 ((1−x^n )/(1−x)) dx   [Σ_(k=0) ^(n−1) (x^(k+1) /(k+1))]_0 ^1  = ∫_0 ^1 ((1−x^n )/(1−x)) dx   Σ_(k=0) ^(n−1) (1/(k+1)) = ∫_0 ^1 ((1−x^n )/(1−x)) dx   Σ_(k=1) ^n (1/k) = H_n  = ∫_0 ^1 ((1−x^n )/(1−x)) dx   Σ_(n=1) ^∞ (1/n^2 )∫_0 ^1 ((1−x^n )/(1−x)) dx = Σ_(n=1) ^∞ (H_n /n^2 )   (1)    • Σ_(m=1) ^∞ (H_m /m^2 ) = Σ_(m=1) ^∞ Σ_(n=1) ^m (1/(m^2 n))  Σ_(m=1) ^∞ (H_m /m^2 ) = Σ_(n=1) ^∞ Σ_(m=n) ^∞ (1/(m^2 n))  Σ_(m=1) ^∞ (H_m /m^2 ) = Σ_(n=1) ^∞ ((1/n^3 )+Σ_(m=n+1) ^∞ (1/(m^2 n)))  Σ_(m=1) ^∞ (H_m /m^2 ) = Σ_(n=1) ^∞ (1/n^3 )+Σ_(n=1) ^∞ Σ_(m=n+1) ^∞ (1/(m^2 n))  Σ_(m=1) ^∞ (H_m /m^2 ) = ζ(3)+Σ_(n=1) ^∞ Σ_(m=1) ^∞ (1/((m+n)^2 n))  By symmetry :  Σ_(m=1) ^∞ (H_m /m^2 ) = ζ(3)+(1/2)Σ_(n=1) ^∞ Σ_(m=1) ^∞ ((1/((m+n)^2 n))+(1/((m+n)^2 m)))  Σ_(m=1) ^∞ (H_m /m^2 ) = ζ(3)+(1/2)Σ_(n=1) ^∞ Σ_(m=1) ^∞ ((m+n)/(mn(m+n)^2 ))  Σ_(m=1) ^∞ (H_m /m^2 ) = ζ(3)+(1/2)Σ_(n=1) ^∞ Σ_(m=1) ^∞ (1/(mn(m+n)))  Σ_(m=1) ^∞ (H_m /m^2 ) = ζ(3)+(1/2)Σ_(n=1) ^∞ (1/n)Σ_(m=1) ^∞ (1/(m(m+n)))  Σ_(m=1) ^∞ (H_m /m^2 ) = ζ(3)+(1/2)Σ_(n=1) ^∞ (1/n^2 )Σ_(m=1) ^∞ ((1/m)−(1/(m+n)))  But the telescopic sum Σ_(m=1) ^∞ ((1/m)−(1/(m+n))) is H_n .  Σ_(m=1) ^∞ (H_m /m^2 ) = ζ(3)+(1/2)Σ_(n=1) ^∞ (H_n /n^2 )  ⇒Σ_(n=1) ^∞ (H_n /n^2 ) = ζ(3)+(1/2)Σ_(n=1) ^∞ (H_n /n^2 )  Σ_(n=1) ^∞ (H_n /n^2 ) = 2ζ(3)    (2)     • (1) and (2) give :  Σ_(n=1) ^∞ (1/n^2 )∫_0 ^1 ((1−x^n )/(1−x)) dx = Σ_(n=1) ^∞ (H_n /n^2 ) = 2ζ(3)

n1k=0xk=1xn1x01n1k=0xkdx=011xn1xdx[n1k=0xk+1k+1]01=011xn1xdxn1k=01k+1=011xn1xdxnk=11k=Hn=011xn1xdxn=11n2011xn1xdx=n=1Hnn2(1)m=1Hmm2=m=1mn=11m2nm=1Hmm2=n=1m=n1m2nm=1Hmm2=n=1(1n3+m=n+11m2n)m=1Hmm2=n=11n3+n=1m=n+11m2nm=1Hmm2=ζ(3)+n=1m=11(m+n)2nBysymmetry:m=1Hmm2=ζ(3)+12n=1m=1(1(m+n)2n+1(m+n)2m)m=1Hmm2=ζ(3)+12n=1m=1m+nmn(m+n)2m=1Hmm2=ζ(3)+12n=1m=11mn(m+n)m=1Hmm2=ζ(3)+12n=11nm=11m(m+n)m=1Hmm2=ζ(3)+12n=11n2m=1(1m1m+n)Butthetelescopicsumm=1(1m1m+n)isHn.m=1Hmm2=ζ(3)+12n=1Hnn2n=1Hnn2=ζ(3)+12n=1Hnn2n=1Hnn2=2ζ(3)(2)(1)and(2)give:n=11n2011xn1xdx=n=1Hnn2=2ζ(3)

Commented by Tawa11 last updated on 22/Aug/21

Thanks for your time sir

Thanksforyourtimesir

Commented by Tawa11 last updated on 22/Aug/21

Wow, great sir.

Wow,greatsir.

Commented by Tawa11 last updated on 22/Aug/21

Help me check  Q151641

HelpmecheckQ151641

Commented by Tawa11 last updated on 22/Aug/21

And   Q151636

AndQ151636

Terms of Service

Privacy Policy

Contact: info@tinkutara.com