Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 151641 by Tawa11 last updated on 22/Aug/21

Answered by Kamel last updated on 22/Aug/21

S_n =Σ_(k=0) ^(n−1) ∫_0 ^1 x^(3k) dx=∫_0 ^1 ((1−x^(3n) )/(1−x^3 ))dx       =^(t=x^3 ) (1/3)∫_0 ^1 ((t^(−(2/3)) −t^(n−(2/3)) )/(1−t))dt =(1/3)(Ψ(n+(1/3))+γ−∫_0 ^1 ((1−t^(−(2/3)) )/(1−t))dt)        =((Ψ(n+(1/3)))/3)+(γ/3)−∫_0 ^1 ((x^2 −1)/(1−x^3 ))dx =((Ψ(n+(1/3)))/3)+(γ/3)+(1/2)∫_0 ^1 ((1+2x+1)/(1+x+x^2 ))dx        =((Ψ(n+(1/3)))/3)+(γ/3)+((Ln(3))/2)+(1/2)∫_0 ^1 (1/((x+(1/2))^2 +(3/4)))dx        =((Ψ(n+(1/3)))/3)+(γ/3)+((Ln(3))/2)+(1/( (√3)))(Arctan((2/( (√3)))+(1/( (√3))))−Arctan((1/( (√3)))))        =((Ψ(n+(1/3)))/3)+(γ/3)+((Ln(3))/2)+(1/( (√3)))(Arctan((1/( (√3)))))        =((Ψ(n+(1/3)))/3)+(γ/3)+((Ln(3))/2)+((π(√3))/(18))

$${S}_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{3}{k}} {dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{\mathrm{3}{n}} }{\mathrm{1}−{x}^{\mathrm{3}} }{dx} \\ $$$$\:\:\:\:\:\overset{{t}={x}^{\mathrm{3}} } {=}\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{−\frac{\mathrm{2}}{\mathrm{3}}} −{t}^{{n}−\frac{\mathrm{2}}{\mathrm{3}}} }{\mathrm{1}−{t}}{dt}\:=\frac{\mathrm{1}}{\mathrm{3}}\left(\Psi\left({n}+\frac{\mathrm{1}}{\mathrm{3}}\right)+\gamma−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{t}^{−\frac{\mathrm{2}}{\mathrm{3}}} }{\mathrm{1}−{t}}{dt}\right) \\ $$$$\:\:\:\:\:\:=\frac{\Psi\left({n}+\frac{\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{3}}+\frac{\gamma}{\mathrm{3}}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{3}} }{dx}\:=\frac{\Psi\left({n}+\frac{\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{3}}+\frac{\gamma}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}+\mathrm{2}{x}+\mathrm{1}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:=\frac{\Psi\left({n}+\frac{\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{3}}+\frac{\gamma}{\mathrm{3}}+\frac{{Ln}\left(\mathrm{3}\right)}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}}{dx} \\ $$$$\:\:\:\:\:\:=\frac{\Psi\left({n}+\frac{\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{3}}+\frac{\gamma}{\mathrm{3}}+\frac{{Ln}\left(\mathrm{3}\right)}{\mathrm{2}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\left({Arctan}\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)−{Arctan}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\right) \\ $$$$\:\:\:\:\:\:=\frac{\Psi\left({n}+\frac{\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{3}}+\frac{\gamma}{\mathrm{3}}+\frac{{Ln}\left(\mathrm{3}\right)}{\mathrm{2}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\left({Arctan}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\right) \\ $$$$\:\:\:\:\:\:=\frac{\Psi\left({n}+\frac{\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{3}}+\frac{\gamma}{\mathrm{3}}+\frac{{Ln}\left(\mathrm{3}\right)}{\mathrm{2}}+\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{18}} \\ $$$$\:\:\:\:\: \\ $$

Commented by Tawa11 last updated on 22/Aug/21

Wow. God bless you sir. I appreciate.

$$\mathrm{Wow}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com