Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 151699 by iloveisrael last updated on 22/Aug/21

    Σ_(x^3 +2022x−2021=0) (((1+x)/(1−x))) =?

$$\:\:\:\:\underset{{x}^{\mathrm{3}} +\mathrm{2022}{x}−\mathrm{2021}=\mathrm{0}} {\sum}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)\:=? \\ $$

Answered by mr W last updated on 22/Aug/21

x^3 +2022x−2021=0  (x−1+1)^3 +2022(x−1+1)−2021=0  let x−1=t  (t+1)^3 +2022(t+1)−2021=0  t^3 +3t^2 +3t+1+2022t+2022−2021=0  t^3 +3t^2 +2025t+2=0  (2/t^3 )+((2025)/t^2 )+(3/t)+1=0  ⇒Σ(1/t)=−((2025)/2)  ((1+x)/(1−x))=−((x−1+2)/(x−1))=−1−(2/(x−1))=−1−(2/t)  Σ((1+x)/(1−x))=Σ(−1−(2/t))=−3−2Σ(1/t)  =−3−2×(−((2025)/2))  =2022

$${x}^{\mathrm{3}} +\mathrm{2022}{x}−\mathrm{2021}=\mathrm{0} \\ $$$$\left({x}−\mathrm{1}+\mathrm{1}\right)^{\mathrm{3}} +\mathrm{2022}\left({x}−\mathrm{1}+\mathrm{1}\right)−\mathrm{2021}=\mathrm{0} \\ $$$${let}\:{x}−\mathrm{1}={t} \\ $$$$\left({t}+\mathrm{1}\right)^{\mathrm{3}} +\mathrm{2022}\left({t}+\mathrm{1}\right)−\mathrm{2021}=\mathrm{0} \\ $$$${t}^{\mathrm{3}} +\mathrm{3}{t}^{\mathrm{2}} +\mathrm{3}{t}+\mathrm{1}+\mathrm{2022}{t}+\mathrm{2022}−\mathrm{2021}=\mathrm{0} \\ $$$${t}^{\mathrm{3}} +\mathrm{3}{t}^{\mathrm{2}} +\mathrm{2025}{t}+\mathrm{2}=\mathrm{0} \\ $$$$\frac{\mathrm{2}}{{t}^{\mathrm{3}} }+\frac{\mathrm{2025}}{{t}^{\mathrm{2}} }+\frac{\mathrm{3}}{{t}}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\Sigma\frac{\mathrm{1}}{{t}}=−\frac{\mathrm{2025}}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}=−\frac{{x}−\mathrm{1}+\mathrm{2}}{{x}−\mathrm{1}}=−\mathrm{1}−\frac{\mathrm{2}}{{x}−\mathrm{1}}=−\mathrm{1}−\frac{\mathrm{2}}{{t}} \\ $$$$\Sigma\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}=\Sigma\left(−\mathrm{1}−\frac{\mathrm{2}}{{t}}\right)=−\mathrm{3}−\mathrm{2}\Sigma\frac{\mathrm{1}}{{t}} \\ $$$$=−\mathrm{3}−\mathrm{2}×\left(−\frac{\mathrm{2025}}{\mathrm{2}}\right) \\ $$$$=\mathrm{2022} \\ $$

Commented by iloveisrael last updated on 22/Aug/21

thank you

$${thank}\:{you} \\ $$

Answered by aleks041103 last updated on 22/Aug/21

((1+x)/(1−x))=((1+1−(1−x))/(1−x))=(2/(1−x))−1  x^3 +2022x−2021=0 has 3 roots by  the fundamental theorem of algebra.  ⇒Σ_(i=1) ^3 ((2/(1−x_i ))−1)=2(Σ_(i=1) ^3 (1/(1−x_i )))−3  Σ_(i=1) ^3 (1/(1−x_i ))=(((1−x_2 )(1−x_3 )+(1−x_1 )(1−x_3 )+(1−x_1 )(1−x_2 ))/((1−x_1 )(1−x_2 )(1−x_3 )))=  =((3−2(x_1 +x_2 +x_3 )+(x_1 x_2 +x_2 x_3 +x_1 x_3 ))/((1−x_1 )(1−x_2 )(1−x_3 )))  Since x_(1,2,3)  are roots of the cubic polynomial  then   x^3 +2022x−2021=(x−x_1 )(x−x_2 )(x−x_3 )  Then  (1−x_1 )(1−x_2 )(1−x_3 )=1^3 +2022.1−2021=2  Also by Vieta′s formulas  x_1 +x_2 +x_3 =0  x_1 x_2 +x_2 x_3 +x_1 x_3 =2022  Therefore  Σ_(i=1) ^3 (1/(1−x_i ))=((3−2(0)+2022)/2)=((2025)/2)  Then:   Σ_(x^3 +2022x−2021=0) (((1+x)/(1−x))) =2022

$$\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}=\frac{\mathrm{1}+\mathrm{1}−\left(\mathrm{1}−{x}\right)}{\mathrm{1}−{x}}=\frac{\mathrm{2}}{\mathrm{1}−{x}}−\mathrm{1} \\ $$$${x}^{\mathrm{3}} +\mathrm{2022}{x}−\mathrm{2021}=\mathrm{0}\:{has}\:\mathrm{3}\:{roots}\:{by} \\ $$$${the}\:{fundamental}\:{theorem}\:{of}\:{algebra}. \\ $$$$\Rightarrow\underset{{i}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}\left(\frac{\mathrm{2}}{\mathrm{1}−{x}_{{i}} }−\mathrm{1}\right)=\mathrm{2}\left(\underset{{i}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}\frac{\mathrm{1}}{\mathrm{1}−{x}_{{i}} }\right)−\mathrm{3} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}\frac{\mathrm{1}}{\mathrm{1}−{x}_{{i}} }=\frac{\left(\mathrm{1}−{x}_{\mathrm{2}} \right)\left(\mathrm{1}−{x}_{\mathrm{3}} \right)+\left(\mathrm{1}−{x}_{\mathrm{1}} \right)\left(\mathrm{1}−{x}_{\mathrm{3}} \right)+\left(\mathrm{1}−{x}_{\mathrm{1}} \right)\left(\mathrm{1}−{x}_{\mathrm{2}} \right)}{\left(\mathrm{1}−{x}_{\mathrm{1}} \right)\left(\mathrm{1}−{x}_{\mathrm{2}} \right)\left(\mathrm{1}−{x}_{\mathrm{3}} \right)}= \\ $$$$=\frac{\mathrm{3}−\mathrm{2}\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} \right)+\left({x}_{\mathrm{1}} {x}_{\mathrm{2}} +{x}_{\mathrm{2}} {x}_{\mathrm{3}} +{x}_{\mathrm{1}} {x}_{\mathrm{3}} \right)}{\left(\mathrm{1}−{x}_{\mathrm{1}} \right)\left(\mathrm{1}−{x}_{\mathrm{2}} \right)\left(\mathrm{1}−{x}_{\mathrm{3}} \right)} \\ $$$${Since}\:{x}_{\mathrm{1},\mathrm{2},\mathrm{3}} \:{are}\:{roots}\:{of}\:{the}\:{cubic}\:{polynomial} \\ $$$${then}\: \\ $$$${x}^{\mathrm{3}} +\mathrm{2022}{x}−\mathrm{2021}=\left({x}−{x}_{\mathrm{1}} \right)\left({x}−{x}_{\mathrm{2}} \right)\left({x}−{x}_{\mathrm{3}} \right) \\ $$$${Then} \\ $$$$\left(\mathrm{1}−{x}_{\mathrm{1}} \right)\left(\mathrm{1}−{x}_{\mathrm{2}} \right)\left(\mathrm{1}−{x}_{\mathrm{3}} \right)=\mathrm{1}^{\mathrm{3}} +\mathrm{2022}.\mathrm{1}−\mathrm{2021}=\mathrm{2} \\ $$$${Also}\:{by}\:{Vieta}'{s}\:{formulas} \\ $$$${x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} =\mathrm{0} \\ $$$${x}_{\mathrm{1}} {x}_{\mathrm{2}} +{x}_{\mathrm{2}} {x}_{\mathrm{3}} +{x}_{\mathrm{1}} {x}_{\mathrm{3}} =\mathrm{2022} \\ $$$${Therefore} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}\frac{\mathrm{1}}{\mathrm{1}−{x}_{{i}} }=\frac{\mathrm{3}−\mathrm{2}\left(\mathrm{0}\right)+\mathrm{2022}}{\mathrm{2}}=\frac{\mathrm{2025}}{\mathrm{2}} \\ $$$${Then}: \\ $$$$\:\underset{{x}^{\mathrm{3}} +\mathrm{2022}{x}−\mathrm{2021}=\mathrm{0}} {\sum}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)\:=\mathrm{2022} \\ $$

Commented by iloveisrael last updated on 22/Aug/21

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com