Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 151738 by tabata last updated on 22/Aug/21

∫_0 ^( 1)  x d(e^x^2  )    how it solve

$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \:{x}\:{d}\left({e}^{{x}^{\mathrm{2}} } \right) \\ $$$$ \\ $$$${how}\:{it}\:{solve}\: \\ $$

Answered by Olaf_Thorendsen last updated on 22/Aug/21

I = ∫_0 ^1 xd(e^x^2  )  I = [xe^x^2  ]_0 ^1 − ∫_0 ^1 e^x^2  dx  I = e−((√π)/2)[erfi(x)]_0 ^1   I = e−((√π)/2)erfi(1)  erfi(z) = (2/( (√π)))Σ_(n=0) ^∞ (z^(2n+1) /((2n+1)n!))  I = e−Σ_(n=0) ^∞ (1/((2n+1)n!))

$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {xd}\left({e}^{{x}^{\mathrm{2}} } \right) \\ $$$$\mathrm{I}\:=\:\left[{xe}^{{x}^{\mathrm{2}} } \right]_{\mathrm{0}} ^{\mathrm{1}} −\:\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{x}^{\mathrm{2}} } {dx} \\ $$$$\mathrm{I}\:=\:{e}−\frac{\sqrt{\pi}}{\mathrm{2}}\left[\mathrm{erfi}\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\mathrm{I}\:=\:{e}−\frac{\sqrt{\pi}}{\mathrm{2}}\mathrm{erfi}\left(\mathrm{1}\right) \\ $$$$\mathrm{erfi}\left({z}\right)\:=\:\frac{\mathrm{2}}{\:\sqrt{\pi}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{z}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right){n}!} \\ $$$$\mathrm{I}\:=\:{e}−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right){n}!} \\ $$

Commented by Olaf_Thorendsen last updated on 22/Aug/21

I ≈ e−1,462651746  I ≈ 1,255630082

$$\mathrm{I}\:\approx\:{e}−\mathrm{1},\mathrm{462651746} \\ $$$$\mathrm{I}\:\approx\:\mathrm{1},\mathrm{255630082} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com