Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 101835 by bobhans last updated on 05/Jul/20

∫_0 ^∞ (1/(e^x +1)) dx

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{\mathrm{1}}{{e}^{{x}} +\mathrm{1}}\:{dx}\: \\ $$

Answered by Dwaipayan Shikari last updated on 05/Jul/20

∫_0 ^∞ (e^x /(e^x (e^x +1)))dx=∫_0 ^∞ (dt/((t−1)t))=∫_2 ^∞ ((1/(t−1))−(1/t))dt=[log(((t−1)/t))]_2 ^∞   =log2                   {suppose e^x +1=t

$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{{x}} }{{e}^{{x}} \left({e}^{{x}} +\mathrm{1}\right)}{dx}=\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\left({t}−\mathrm{1}\right){t}}=\int_{\mathrm{2}} ^{\infty} \left(\frac{\mathrm{1}}{{t}−\mathrm{1}}−\frac{\mathrm{1}}{{t}}\right){dt}=\left[{log}\left(\frac{{t}−\mathrm{1}}{{t}}\right)\right]_{\mathrm{2}} ^{\infty} \\ $$$$={log}\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{{suppose}\:{e}^{{x}} +\mathrm{1}={t}\right. \\ $$

Answered by john santu last updated on 05/Jul/20

set e^x  = tan^2 p →dx = ((2sec^2 p dp)/(tan p))  I= 2∫_(π/4) ^(π/2)  ((sec^2 p dp)/(tan p(tan^2 p+1)))  I = 2∫_(π/4) ^(π/2) cot p dp = 2[ ln ∣sin p∣]_(π/4) ^(π/2)   = 2ln(1)−2ln(((√2)/2)) = ln(2)   (JS ⊛)

$${set}\:{e}^{{x}} \:=\:\mathrm{tan}\:^{\mathrm{2}} {p}\:\rightarrow{dx}\:=\:\frac{\mathrm{2sec}\:^{\mathrm{2}} {p}\:{dp}}{\mathrm{tan}\:{p}} \\ $$$${I}=\:\mathrm{2}\underset{\pi/\mathrm{4}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{sec}\:^{\mathrm{2}} {p}\:{dp}}{\mathrm{tan}\:{p}\left(\mathrm{tan}\:^{\mathrm{2}} {p}+\mathrm{1}\right)} \\ $$$${I}\:=\:\mathrm{2}\underset{\pi/\mathrm{4}} {\overset{\pi/\mathrm{2}} {\int}}\mathrm{cot}\:{p}\:{dp}\:=\:\mathrm{2}\left[\:\mathrm{ln}\:\mid\mathrm{sin}\:{p}\mid\right]_{\pi/\mathrm{4}} ^{\pi/\mathrm{2}} \\ $$$$=\:\mathrm{2ln}\left(\mathrm{1}\right)−\mathrm{2ln}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)\:=\:\mathrm{ln}\left(\mathrm{2}\right)\: \\ $$$$\left(\mathrm{J}{S}\:\circledast\right) \\ $$

Answered by mathmax by abdo last updated on 05/Jul/20

I =∫_0 ^∞   (dx/(e^x  +1))  we do the changement e^x  =t ⇒I =∫_1 ^(+∞)  (dt/(t(t+1)))  =∫_1 ^∞  ((1/t)−(1/(t+1)))dt =[ln∣(t/(t+1))∣]_1 ^∞  =−ln((1/2)) =ln(2)

$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{dx}}{\mathrm{e}^{\mathrm{x}} \:+\mathrm{1}}\:\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{e}^{\mathrm{x}} \:=\mathrm{t}\:\Rightarrow\mathrm{I}\:=\int_{\mathrm{1}} ^{+\infty} \:\frac{\mathrm{dt}}{\mathrm{t}\left(\mathrm{t}+\mathrm{1}\right)} \\ $$$$=\int_{\mathrm{1}} ^{\infty} \:\left(\frac{\mathrm{1}}{\mathrm{t}}−\frac{\mathrm{1}}{\mathrm{t}+\mathrm{1}}\right)\mathrm{dt}\:=\left[\mathrm{ln}\mid\frac{\mathrm{t}}{\mathrm{t}+\mathrm{1}}\mid\right]_{\mathrm{1}} ^{\infty} \:=−\mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\mathrm{ln}\left(\mathrm{2}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com