Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 151863 by pticantor last updated on 23/Aug/21

   lim_(x−0) ((1−Π_(k=1) ^n cos(kx))/x^2 )=????

$$\: \\ $$$$\boldsymbol{{li}}\underset{\boldsymbol{{x}}−\mathrm{0}} {\boldsymbol{{m}}}\frac{\mathrm{1}−\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\prod}}\boldsymbol{{cos}}\left(\boldsymbol{{kx}}\right)}{\boldsymbol{{x}}^{\mathrm{2}} }=???? \\ $$$$ \\ $$

Answered by ArielVyny last updated on 23/Aug/21

Π_(k=1) ^n cos(kx)=Re(Π_(k=1) ^n e^(ikx) )  U_k =Π_(k=1) ^n e^(ikx) →ln(U_k )=Σ_(k=1) ^n ln(e^(ikx) )=Σ_(k≥1) ikx  ln(U_k )=ix((n(n+1))/2)→U_k =e^(ix((n(n+1))/2))   Π_(k=1) ^n cos(kx)=cos(((n(n+1))/2)x)  lim_(x→0) ((1−cos(((n(n+1))/2)x))/x^2 )=((1−[1−((((((n(n+1))/2)x)^2 )/2)])/x^2 )=((n^2 (n+1)^2 x^2 )/8)×(1/x^2 )    cos(tx)=Σ(((−1)^n (tx)^(2n) )/((2n!)))=1−(((tx)^2 )/2)  lim_(x→0) ((1−Π_(k=1) ^n cos(kx))/x^2 )=((n^2 (n+1)^2 )/8)

$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{cos}\left({kx}\right)={Re}\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{e}^{{ikx}} \right) \\ $$$${U}_{{k}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{e}^{{ikx}} \rightarrow{ln}\left({U}_{{k}} \right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{ln}\left({e}^{{ikx}} \right)=\underset{{k}\geqslant\mathrm{1}} {\sum}{ikx} \\ $$$${ln}\left({U}_{{k}} \right)={ix}\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\rightarrow{U}_{{k}} ={e}^{{ix}\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{cos}\left({kx}\right)={cos}\left(\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}{x}\right) \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \frac{\mathrm{1}−{cos}\left(\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}{x}\right)}{{x}^{\mathrm{2}} }=\frac{\mathrm{1}−\left[\mathrm{1}−\left(\frac{\left(\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}{x}\right)^{\mathrm{2}} }{\mathrm{2}}\right]\right.}{{x}^{\mathrm{2}} }=\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} {x}^{\mathrm{2}} }{\mathrm{8}}×\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\: \\ $$$${cos}\left({tx}\right)=\Sigma\frac{\left(−\mathrm{1}\right)^{{n}} \left({tx}\right)^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}!\right)}=\mathrm{1}−\frac{\left({tx}\right)^{\mathrm{2}} }{\mathrm{2}} \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \frac{\mathrm{1}−\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{cos}\left({kx}\right)}{{x}^{\mathrm{2}} }=\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{8}} \\ $$

Commented by pticantor last updated on 14/May/22

bravooo

$$\boldsymbol{{bravooo}} \\ $$

Answered by mnjuly1970 last updated on 24/Aug/21

   solution...     lim_( x→0) ((1 −cos(x).cos(2x)....cos(nx))/x^( 2) )       =^(L;opital rule) lim_( x→0) ((sin(x).Π_(k=2) ^n cos(kx)+2sin(2x).Π_(k=1,k≠2) ^n cos(kx)...+nsin(nx )Π_(k=1) ^(n−1) cos(kx))/(2x))           =_(sin(mx)≈_(x→ 0)  mx) ^(equivallance rule) lim_( x→0) ((x +2^2 x + 3^2 x+...+n^( 2) x)/(2x))        =(( 1)/(12)) (n ) (n +1 ) ( 2n +1 ) .....■

$$\:\:\:{solution}... \\ $$$$\:\:\:{lim}_{\:{x}\rightarrow\mathrm{0}} \frac{\mathrm{1}\:−{cos}\left({x}\right).{cos}\left(\mathrm{2}{x}\right)....{cos}\left({nx}\right)}{{x}^{\:\mathrm{2}} } \\ $$$$\:\:\:\:\:\overset{\mathrm{L};{opital}\:{rule}} {=}{lim}_{\:{x}\rightarrow\mathrm{0}} \frac{{sin}\left({x}\right).\underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}{cos}\left({kx}\right)+\mathrm{2}{sin}\left(\mathrm{2}{x}\right).\underset{{k}=\mathrm{1},{k}\neq\mathrm{2}} {\overset{{n}} {\prod}}{cos}\left({kx}\right)...+{nsin}\left({nx}\:\right)\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}{cos}\left({kx}\right)}{\mathrm{2}{x}} \\ $$$$\:\:\:\:\:\:\:\:\:\underset{{sin}\left({mx}\right)\underset{{x}\rightarrow\:\mathrm{0}} {\approx}\:{mx}} {\overset{{equivallance}\:{rule}} {=}}{lim}_{\:{x}\rightarrow\mathrm{0}} \frac{{x}\:+\mathrm{2}^{\mathrm{2}} {x}\:+\:\mathrm{3}^{\mathrm{2}} {x}+...+{n}^{\:\mathrm{2}} {x}}{\mathrm{2}{x}} \\ $$$$\:\:\:\:\:\:=\frac{\:\mathrm{1}}{\mathrm{12}}\:\left({n}\:\right)\:\left({n}\:+\mathrm{1}\:\right)\:\left(\:\mathrm{2}{n}\:+\mathrm{1}\:\right)\:.....\blacksquare \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com