Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 151965 by mnjuly1970 last updated on 24/Aug/21

     x , y ∈ R         & sin(x )+ cos (y ) =1  then  max ( sin(y) + cos (x) ) =?    ....

x,yR &sin(x)+cos(y)=1 thenmax(sin(y)+cos(x))=? ....

Answered by mr W last updated on 24/Aug/21

let k=sin y+cos x   ...(i)  1=sin x+cos y   ...(ii)  (i)^2 +(ii)^2 :  k^2 +1^2 =1+1+2(sin ycos x+sin xcos y)  k^2 =1+2 sin (x+y)≤1+2=3  ⇒k_(max) =(√3)  ⇒k_(min) =−(√3)

letk=siny+cosx...(i) 1=sinx+cosy...(ii) (i)2+(ii)2: k2+12=1+1+2(sinycosx+sinxcosy) k2=1+2sin(x+y)1+2=3 kmax=3 kmin=3

Commented bymnjuly1970 last updated on 24/Aug/21

  very nice master W..gratefu<l..

verynicemasterW..gratefu<l..

Answered by john_santu last updated on 25/Aug/21

 given x,y∈R and sin x+cos y=1  find max (sin y+cos x).  by Langrange multiplier  f(x,y,λ)=sin y+cos x+λ(sin x+cos y−1)  (∂f/∂x)=−sin x+λcos x=0 ; tan x=λ  (∂f/∂y)=cos y+λ(−sin y)=0 ; tan y=(1/λ)  (∂f/∂λ)=sin x+cos y=1  (1)&(2)⇒tan x tan y=1  ⇒sin x sin y = cos x cos y  ⇒(1−cos y)sin y=(√(1−(1−cos y)^2 )) cos y  ⇒(1−cos y)(√(1−cos^2 y)) =(√(1−(1−cos y)^2 )) cos y  ⇒(1−c)(√(1−c^2 )) = (√(2c−c^2 )) c  ⇒(1−c)^2 (1−c^2 )=c^2 (2c−c^2 )  ⇒(1−2c+c^2 )(1−c^2 )=2c^3 −c^4   ⇒1−c^2 −2c+2c^3 +c^2 −c^4 =2c^3 −c^4   ⇒1−2c=0 ; c=(1/2)=cos y⇒sin y=± ((√3)/2)  ⇒sin x=(1/2)⇒cos x=±((√3)/2)  therefore max sin y+cos x = ((√3)/2)+((√3)/2)=(√3)

givenx,yRandsinx+cosy=1 findmax(siny+cosx). byLangrangemultiplier f(x,y,λ)=siny+cosx+λ(sinx+cosy1) fx=sinx+λcosx=0;tanx=λ fy=cosy+λ(siny)=0;tany=1λ fλ=sinx+cosy=1 (1)&(2)tanxtany=1 sinxsiny=cosxcosy (1cosy)siny=1(1cosy)2cosy (1cosy)1cos2y=1(1cosy)2cosy (1c)1c2=2cc2c (1c)2(1c2)=c2(2cc2) (12c+c2)(1c2)=2c3c4 1c22c+2c3+c2c4=2c3c4 12c=0;c=12=cosysiny=±32 sinx=12cosx=±32 thereforemaxsiny+cosx=32+32=3

Commented bymnjuly1970 last updated on 25/Aug/21

thank you so much...

thankyousomuch...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com