Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 151979 by mathdanisur last updated on 24/Aug/21

lim_(x→0) (((1+mx)^n  - (1+nx)^m )/x^2 ) = ?  ;  m;n∈N

limx0(1+mx)n(1+nx)mx2=?;m;nN

Answered by mr W last updated on 24/Aug/21

(1+mx)^n =1+nmx+((n(n−1)m^2 )/2)x^2 +o(x^2 )  (1+nx)^m =1+mnx+((m(m−1)n^2 )/2)x^2 +o(x^2 )  ⇒L=((n(n−1)m^2 )/2)−((m(m−1)n^2 )/2)  ⇒L=((mn(n−m))/2)

(1+mx)n=1+nmx+n(n1)m22x2+o(x2)(1+nx)m=1+mnx+m(m1)n22x2+o(x2)L=n(n1)m22m(m1)n22L=mn(nm)2

Commented by mathdanisur last updated on 24/Aug/21

Thank You Ser

ThankYouSer

Commented by mathdanisur last updated on 25/Aug/21

Thank you Ser

ThankyouSer

Answered by mr W last updated on 24/Aug/21

L=((n(1+mx)^(n−1) m−m(1+nx)^(m−1) n)/(2x))  L=((n(n−1)(1+mx)^(n−2) m^2 −m(m−1)(1+nx)^(m−2) n^2 )/2)  L=((n(n−1)m^2 −m(m−1)n^2 )/2)  L=((mn(n−m))/2)

L=n(1+mx)n1mm(1+nx)m1n2xL=n(n1)(1+mx)n2m2m(m1)(1+nx)m2n22L=n(n1)m2m(m1)n22L=mn(nm)2

Answered by Kamel last updated on 25/Aug/21

With classic method:  L=lim_(x→0) (((1+mx)^n −(1+nx)^m )/x^2 ), m,n∈N.     =lim_(x→0) ((((1+mx)^n −1)−((1+nx)^m −1))/x^2 )    =lim_(x→0) ((mx(1+(1+mx)+(1+mx)^2 +...+(1+mx)^(n−1) )−nx(1+1+nx+(1+nx)^2 +...(1+nx)^(m−1) ))/x^2 )    =lim_(x→0) ((m(1+(1+mx)+(1+mx)^2 +...+(1+mx)^(n−1) )−n(1+1+nx+(1+nx)^2 +...(1+nx)^(m−1) ))/x)    =lim_(x→0) ((m(1+(1+mx)+(1+mx)^2 +...+(1+mx)^(n−1) −n)−n(1+1+nx+(1+nx)^2 +...(1+nx)^(m−1) −m))/x)    =lim_(x→0) [m(((1+mx−1)/x)+(((1+mx)^2 −1)/x)+...+(((1+mx)^(n−1) −1)/x))−n(((1+nx−1)/x)+(((1+nx)^2 −1)/x)+...+(((1+nx)^(m−1) −1)/x))]  lim_(x→0) (((1+ax)^p −1)/x)=((ax(1+1+ax+(1+ax)^2 +...+(1+ax)^(p−1) )/x)=ap  ∴ L=m(m+2m+3m+...+(n−1)m)−n(n+2n+3n+...n(m−1))          =m^2 ((n(n−1))/2)−n^2 ((m(m−1))/2)          =((mn)/2)(nm−m−nm+n)=((mn(n−m))/2)      ∴      lim_(x→0) (((1+mx)^n −(1+nx)^m )/x^2 )=((mn(n−m))/2)                                           KAMEL BENAICHA

Withclassicmethod:L=limx0(1+mx)n(1+nx)mx2,m,nN.=limx0((1+mx)n1)((1+nx)m1)x2=limx0mx(1+(1+mx)+(1+mx)2+...+(1+mx)n1)nx(1+1+nx+(1+nx)2+...(1+nx)m1)x2=limx0m(1+(1+mx)+(1+mx)2+...+(1+mx)n1)n(1+1+nx+(1+nx)2+...(1+nx)m1)x=limx0m(1+(1+mx)+(1+mx)2+...+(1+mx)n1n)n(1+1+nx+(1+nx)2+...(1+nx)m1m)x=limx0[m(1+mx1x+(1+mx)21x+...+(1+mx)n11x)n(1+nx1x+(1+nx)21x+...+(1+nx)m11x)]limx0(1+ax)p1x=ax(1+1+ax+(1+ax)2+...+(1+ax)p1x=apL=m(m+2m+3m+...+(n1)m)n(n+2n+3n+...n(m1))=m2n(n1)2n2m(m1)2=mn2(nmmnm+n)=mn(nm)2limx0(1+mx)n(1+nx)mx2=mn(nm)2KAMELBENAICHA

Commented by mathdanisur last updated on 25/Aug/21

Thank you Ser

ThankyouSer

Terms of Service

Privacy Policy

Contact: info@tinkutara.com