Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 151983 by puissant last updated on 24/Aug/21

∫_(−∞) ^(+∞) (((1−ix)/(1+ix)))^n (((1+ix)/(1−ix)))^m (1/(1+x^2 ))dx

$$\int_{−\infty} ^{+\infty} \left(\frac{\mathrm{1}−{ix}}{\mathrm{1}+{ix}}\right)^{{n}} \left(\frac{\mathrm{1}+{ix}}{\mathrm{1}−{ix}}\right)^{{m}} \frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Answered by Olaf_Thorendsen last updated on 24/Aug/21

I = ∫_(−∞) ^(+∞) (((1−ix)/(1+ix)))^n (((1+ix)/(1−ix)))^m (1/(1+x^2 )) dx    • m = n, I = π (trivial)    • m ≠ n :  I = ∫_(−∞) ^(+∞) (e^(inarctan(−x)) /e^(inarctan(+x)) ).(e^(imarctan(+x)) /e^(imarctan(−x)) ).(1/(1+x^2 )) dx  I = ∫_(−∞) ^(+∞) (e^(2i(m−n)arctanx) /(1+x^2 )) dx  I = [(e^(2i(m−n)arctanx) /(2i(m−n)))]_(−∞) ^(+∞)   I = ((e^(iπ(m−n)) −e^(−iπ(m−n)) )/(2i(m−n)))  I = ((sin(π(m−n)))/(m−n)) = (0/(m−n)) = 0    My result is very strange.  You should verify the calculous.  I′m not sure it′s the good way.

$$\mathrm{I}\:=\:\int_{−\infty} ^{+\infty} \left(\frac{\mathrm{1}−{ix}}{\mathrm{1}+{ix}}\right)^{{n}} \left(\frac{\mathrm{1}+{ix}}{\mathrm{1}−{ix}}\right)^{{m}} \frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$$$ \\ $$$$\bullet\:{m}\:=\:{n},\:\mathrm{I}\:=\:\pi\:\left(\mathrm{trivial}\right) \\ $$$$ \\ $$$$\bullet\:{m}\:\neq\:{n}\:: \\ $$$$\mathrm{I}\:=\:\int_{−\infty} ^{+\infty} \frac{{e}^{{in}\mathrm{arctan}\left(−{x}\right)} }{{e}^{{in}\mathrm{arctan}\left(+{x}\right)} }.\frac{{e}^{{im}\mathrm{arctan}\left(+{x}\right)} }{{e}^{{im}\mathrm{arctan}\left(−{x}\right)} }.\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$$$\mathrm{I}\:=\:\int_{−\infty} ^{+\infty} \frac{{e}^{\mathrm{2}{i}\left({m}−{n}\right)\mathrm{arctan}{x}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx} \\ $$$$\mathrm{I}\:=\:\left[\frac{{e}^{\mathrm{2}{i}\left({m}−{n}\right)\mathrm{arctan}{x}} }{\mathrm{2}{i}\left({m}−{n}\right)}\right]_{−\infty} ^{+\infty} \\ $$$$\mathrm{I}\:=\:\frac{{e}^{{i}\pi\left({m}−{n}\right)} −{e}^{−{i}\pi\left({m}−{n}\right)} }{\mathrm{2}{i}\left({m}−{n}\right)} \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{sin}\left(\pi\left({m}−{n}\right)\right)}{{m}−{n}}\:=\:\frac{\mathrm{0}}{{m}−{n}}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{My}\:\mathrm{result}\:\mathrm{is}\:\mathrm{very}\:\mathrm{strange}. \\ $$$$\mathrm{You}\:\mathrm{should}\:\mathrm{verify}\:\mathrm{the}\:\mathrm{calculous}. \\ $$$$\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{sure}\:\mathrm{it}'\mathrm{s}\:\mathrm{the}\:\mathrm{good}\:\mathrm{way}. \\ $$

Commented by puissant last updated on 24/Aug/21

merci beaucoup Mr

$${merci}\:{beaucoup}\:{Mr} \\ $$

Commented by puissant last updated on 24/Aug/21

∫_(−∞) ^(+∞) (((1−ix)/(1+ix)))^n (((1+ix)/(1−ix)))^m (1/(1+x^2 ))dx  =∫_(−∞) ^(+∞) (((1+ix)/(1−ix)))^(m−n) (1/(1+x^2 ))dx  =∫_(−(π/2)) ^(+(π/2)) (((1+itant)/(1−itant)))^(m−n) dt =∫_(−(π/2)) ^(+(π/2)) (((cost+isint)/(cost−isint)))^(m−n) dt  =∫_(−(π/2)) ^(+(π/2)) e^(2it(m−n)) dt = [(e^(2it(m−n)) /(2i(m−n)))]_(−(π/2)) ^(+(π/2))   =((e^(iπ(m−n)) −e^(−iπ(m−n)) )/(2i(m−n)))  =((sin(π(m−n)))/((m−n))) = 0..  En fait voici ce que j′ai fait Mr mais  je voulais confirmer mon resultat..  Merci pour votre temps..  Cordialement..

$$\int_{−\infty} ^{+\infty} \left(\frac{\mathrm{1}−{ix}}{\mathrm{1}+{ix}}\right)^{{n}} \left(\frac{\mathrm{1}+{ix}}{\mathrm{1}−{ix}}\right)^{{m}} \frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\int_{−\infty} ^{+\infty} \left(\frac{\mathrm{1}+{ix}}{\mathrm{1}−{ix}}\right)^{{m}−{n}} \frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\int_{−\frac{\pi}{\mathrm{2}}} ^{+\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{1}+{itant}}{\mathrm{1}−{itant}}\right)^{{m}−{n}} {dt}\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{+\frac{\pi}{\mathrm{2}}} \left(\frac{{cost}+{isint}}{{cost}−{isint}}\right)^{{m}−{n}} {dt} \\ $$$$=\int_{−\frac{\pi}{\mathrm{2}}} ^{+\frac{\pi}{\mathrm{2}}} {e}^{\mathrm{2}{it}\left({m}−{n}\right)} {dt}\:=\:\left[\frac{{e}^{\mathrm{2}{it}\left({m}−{n}\right)} }{\mathrm{2}{i}\left({m}−{n}\right)}\right]_{−\frac{\pi}{\mathrm{2}}} ^{+\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{{e}^{{i}\pi\left({m}−{n}\right)} −{e}^{−{i}\pi\left({m}−{n}\right)} }{\mathrm{2}{i}\left({m}−{n}\right)} \\ $$$$=\frac{{sin}\left(\pi\left({m}−{n}\right)\right)}{\left({m}−{n}\right)}\:=\:\mathrm{0}.. \\ $$$${En}\:{fait}\:{voici}\:{ce}\:{que}\:{j}'{ai}\:{fait}\:{Mr}\:{mais} \\ $$$${je}\:{voulais}\:{confirmer}\:{mon}\:{resultat}.. \\ $$$${Merci}\:{pour}\:{votre}\:{temps}.. \\ $$$${Cordialement}.. \\ $$

Commented by Olaf_Thorendsen last updated on 24/Aug/21

Excellent !  Cette integrale fait peur au depart mais  elle se calcule en 4 ou 5 lignes.  C′est souvent trompeur.

$$\mathrm{Excellent}\:! \\ $$$$\mathrm{Cette}\:\mathrm{integrale}\:\mathrm{fait}\:\mathrm{peur}\:\mathrm{au}\:\mathrm{depart}\:\mathrm{mais} \\ $$$$\mathrm{elle}\:\mathrm{se}\:\mathrm{calcule}\:\mathrm{en}\:\mathrm{4}\:\mathrm{ou}\:\mathrm{5}\:\mathrm{lignes}. \\ $$$$\mathrm{C}'\mathrm{est}\:\mathrm{souvent}\:\mathrm{trompeur}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com