Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 152019 by mathdanisur last updated on 25/Aug/21

Ω =∫_( 0) ^( 1)  Li_2 (x) log(1+x) dx = ?  Li_2 (x)−polylogaritm function

$$\Omega\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:{Li}_{\mathrm{2}} \left({x}\right)\:{log}\left(\mathrm{1}+{x}\right)\:{dx}\:=\:? \\ $$$${Li}_{\mathrm{2}} \left({x}\right)−{polylogaritm}\:{function} \\ $$

Answered by mnjuly1970 last updated on 25/Aug/21

$$\: \\ $$

Answered by Olaf_Thorendsen last updated on 25/Aug/21

Ω = ∫_0 ^1 Li_2 (x)log(1+x) dx  Li_2 (x) = Σ_(k=1) ^∞ (x^k /k^2 )  ∫Li_2 (x)dx = Σ_(k=1) ^∞ (x^(k+1) /(k^2 (k+1)))  Ω = [Σ_(k=1) ^∞ (x^(k+1) /(k^2 (k+1))).log(1+x)]_0 ^1 −∫_0 ^1 Σ_(k=1) ^∞ (x^(k+1) /(k^2 (k+1))).(dx/(1+x))  Ω = log2Σ_(k=1) ^∞ (1/(k^2 (k+1)))−Σ_(k=1) ^∞ (1/(k^2 (k+1)))∫_0 ^1 (x^(k+1) /(1+x)) dx  ∫_0 ^1 (x^(k+1) /(1+x)) dx = −∫_0 ^1 ((1−x^(k+1) )/(1+x)) dx+∫_0 ^1 (dx/(1+x))  ∫_0 ^1 (x^(k+1) /(1+x)) dx = −∫_0 ^1 Σ_(p=0) ^k x^p  dx+∫_0 ^1 (dx/(1+x))  ∫_0 ^1 (x^(k+1) /(1+x)) dx = [−Σ_(p=0) ^k (x^(p+1) /(p+1)) dx+log(1+x)]_0 ^1   ∫_0 ^1 (x^(k+1) /(1+x)) dx = −Σ_(p=0) ^k (1/(p+1)) dx+log2 = log2−H_(k+1)   Ω = log2Σ_(k=1) ^∞ (1/(k^2 (k+1)))−Σ_(k=1) ^∞ ((log2−H_(k+1) )/(k^2 (k+1)))  Ω = Σ_(k=1) ^∞ (H_(k+1) /(k^2 (k+1)))  ...break... I come back

$$\Omega\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{Li}_{\mathrm{2}} \left({x}\right)\mathrm{log}\left(\mathrm{1}+{x}\right)\:{dx} \\ $$$$\mathrm{Li}_{\mathrm{2}} \left({x}\right)\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{k}} }{{k}^{\mathrm{2}} } \\ $$$$\int\mathrm{Li}_{\mathrm{2}} \left({x}\right){dx}\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{k}+\mathrm{1}} }{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)} \\ $$$$\Omega\:=\:\left[\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{k}+\mathrm{1}} }{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)}.\mathrm{log}\left(\mathrm{1}+{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{k}+\mathrm{1}} }{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)}.\frac{{dx}}{\mathrm{1}+{x}} \\ $$$$\Omega\:=\:\mathrm{log2}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)}−\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{k}+\mathrm{1}} }{\mathrm{1}+{x}}\:{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{k}+\mathrm{1}} }{\mathrm{1}+{x}}\:{dx}\:=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{{k}+\mathrm{1}} }{\mathrm{1}+{x}}\:{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{1}+{x}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{k}+\mathrm{1}} }{\mathrm{1}+{x}}\:{dx}\:=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{p}=\mathrm{0}} {\overset{{k}} {\sum}}{x}^{{p}} \:{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{1}+{x}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{k}+\mathrm{1}} }{\mathrm{1}+{x}}\:{dx}\:=\:\left[−\underset{{p}=\mathrm{0}} {\overset{{k}} {\sum}}\frac{{x}^{{p}+\mathrm{1}} }{{p}+\mathrm{1}}\:{dx}+\mathrm{log}\left(\mathrm{1}+{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{k}+\mathrm{1}} }{\mathrm{1}+{x}}\:{dx}\:=\:−\underset{{p}=\mathrm{0}} {\overset{{k}} {\sum}}\frac{\mathrm{1}}{{p}+\mathrm{1}}\:{dx}+\mathrm{log2}\:=\:\mathrm{log2}−{H}_{{k}+\mathrm{1}} \\ $$$$\Omega\:=\:\mathrm{log2}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)}−\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{log2}−{H}_{{k}+\mathrm{1}} }{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)} \\ $$$$\Omega\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{k}+\mathrm{1}} }{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)} \\ $$$$...{break}...\:{I}\:{come}\:{back} \\ $$$$ \\ $$

Commented by mathdanisur last updated on 25/Aug/21

Alot cool Ser, thank you, please

$$\mathrm{Alot}\:\mathrm{cool}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{thank}\:\mathrm{you},\:\mathrm{please} \\ $$

Commented by mathdanisur last updated on 26/Aug/21

Answer Ser

$$\mathrm{Answer}\:\mathrm{Ser} \\ $$

Answered by Kamel last updated on 25/Aug/21

Commented by mathdanisur last updated on 26/Aug/21

The answer is wrong

$$\mathrm{The}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{wrong} \\ $$

Answered by qaz last updated on 25/Aug/21

Ω=[(1+x)ln(1+x)−(1+x)]Li_2 (x)∣_0 ^1 +∫_0 ^1 (1+x)[ln(1+x)−1]((ln(1−x))/x)dx  =(π^2 /3)ln2−(π^2 /3)+∫_0 ^1 (((ln(1+x)ln(1−x))/x)−((ln(1−x))/x)+ln(1+x)ln(1−x)−ln(1−x))dx  =(π^2 /3)ln2−(π^2 /3)−(5/8)ζ(3)+(π^2 /6)+(−(π^2 /6)+ln^2 2−2ln2+2)+1  =(π^2 /3)ln2−(π^2 /3)−(5/8)ζ(3)+ln^2 2−2ln2+3

$$\Omega=\left[\left(\mathrm{1}+\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)−\left(\mathrm{1}+\mathrm{x}\right)\right]\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)\mid_{\mathrm{0}} ^{\mathrm{1}} +\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\mathrm{x}\right)\left[\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)−\mathrm{1}\right]\frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{3}}\mathrm{ln2}−\frac{\pi^{\mathrm{2}} }{\mathrm{3}}+\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}−\frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}+\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)−\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\right)\mathrm{dx} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{3}}\mathrm{ln2}−\frac{\pi^{\mathrm{2}} }{\mathrm{3}}−\frac{\mathrm{5}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)+\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+\left(−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+\mathrm{ln}^{\mathrm{2}} \mathrm{2}−\mathrm{2ln2}+\mathrm{2}\right)+\mathrm{1} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{3}}\mathrm{ln2}−\frac{\pi^{\mathrm{2}} }{\mathrm{3}}−\frac{\mathrm{5}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)+\mathrm{ln}^{\mathrm{2}} \mathrm{2}−\mathrm{2ln2}+\mathrm{3} \\ $$

Commented by mathdanisur last updated on 26/Aug/21

The answer is wrong Ser

$$\mathrm{The}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{wrong}\:\mathrm{Ser} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com