Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 152061 by mnjuly1970 last updated on 25/Aug/21

     solve         Ω= ∫_0 ^( ∞) (( sin^( 3) (x).cos^( 2) (x))/x^( 3) )dx=^? ((7π)/(32))...■

$$ \\ $$$$\:\:\:{solve} \\ $$$$\:\:\:\: \\ $$$$\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}^{\:\mathrm{3}} \left({x}\right).{cos}^{\:\mathrm{2}} \left({x}\right)}{{x}^{\:\mathrm{3}} }{dx}\overset{?} {=}\frac{\mathrm{7}\pi}{\mathrm{32}}...\blacksquare \\ $$

Answered by Ar Brandon last updated on 25/Aug/21

Ω=∫_0 ^∞ ((sin^3 xcos^2 x)/x^3 )dx=∫_0 ^∞ ((sin^3 x−sin^5 x)/x^3 )dx  −8isin^3 x=(e^(ix) −e^(−ix) )^3 =e^(3ix) −3e^(ix) +3e^(−ix) −e^(3ix)   sin^3 x=(3/4)sinx−(1/4)sin3x  32isin^5 x=(e^(ix) −e^(−ix) )^5 =e^(5ix) −5e^(3ix) +10e^(ix) −10e^(−ix) +5e^(−3ix) −e^(−5ix)   sin^5 x=(1/(16))sin5x−(5/(16))sin3x+(5/8)sinx  Ω=∫_0 ^∞ ((1/8)∙((sinx)/x^3 )+(1/(16))∙((sin3x)/x^3 )−(1/(16))∙((sin5x)/x^3 ))dx      =(1/8)∙(π/(2Γ(3)sin(((3π)/2))))+(1/(16))∙((π×3^2 )/(2Γ(3)sin(((3π)/2))))−(1/(16))∙((π×5^2 )/(2Γ(3)sin(((3π)/2))))      =−(π/(32))−((9π)/(64))+((25π)/(64))=((−2π−9π+25π)/(64))=((14π)/(64))=((7π)/(32))★

$$\Omega=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{3}} {x}\mathrm{cos}^{\mathrm{2}} {x}}{{x}^{\mathrm{3}} }{dx}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{3}} {x}−\mathrm{sin}^{\mathrm{5}} {x}}{{x}^{\mathrm{3}} }{dx} \\ $$$$−\mathrm{8}{i}\mathrm{sin}^{\mathrm{3}} {x}=\left({e}^{{ix}} −{e}^{−{ix}} \right)^{\mathrm{3}} ={e}^{\mathrm{3}{ix}} −\mathrm{3}{e}^{{ix}} +\mathrm{3}{e}^{−{ix}} −{e}^{\mathrm{3}{ix}} \\ $$$$\mathrm{sin}^{\mathrm{3}} {x}=\frac{\mathrm{3}}{\mathrm{4}}\mathrm{sin}{x}−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin3}{x} \\ $$$$\mathrm{32}{i}\mathrm{sin}^{\mathrm{5}} {x}=\left({e}^{{ix}} −{e}^{−{ix}} \right)^{\mathrm{5}} ={e}^{\mathrm{5}{ix}} −\mathrm{5}{e}^{\mathrm{3}{ix}} +\mathrm{10}{e}^{{ix}} −\mathrm{10}{e}^{−{ix}} +\mathrm{5}{e}^{−\mathrm{3}{ix}} −{e}^{−\mathrm{5}{ix}} \\ $$$$\mathrm{sin}^{\mathrm{5}} {x}=\frac{\mathrm{1}}{\mathrm{16}}\mathrm{sin5}{x}−\frac{\mathrm{5}}{\mathrm{16}}\mathrm{sin3}{x}+\frac{\mathrm{5}}{\mathrm{8}}\mathrm{sin}{x} \\ $$$$\Omega=\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{8}}\centerdot\frac{\mathrm{sin}{x}}{{x}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{16}}\centerdot\frac{\mathrm{sin3}{x}}{{x}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{16}}\centerdot\frac{\mathrm{sin5}{x}}{{x}^{\mathrm{3}} }\right){dx} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{8}}\centerdot\frac{\pi}{\mathrm{2}\Gamma\left(\mathrm{3}\right)\mathrm{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{2}}\right)}+\frac{\mathrm{1}}{\mathrm{16}}\centerdot\frac{\pi×\mathrm{3}^{\mathrm{2}} }{\mathrm{2}\Gamma\left(\mathrm{3}\right)\mathrm{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{2}}\right)}−\frac{\mathrm{1}}{\mathrm{16}}\centerdot\frac{\pi×\mathrm{5}^{\mathrm{2}} }{\mathrm{2}\Gamma\left(\mathrm{3}\right)\mathrm{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{2}}\right)} \\ $$$$\:\:\:\:=−\frac{\pi}{\mathrm{32}}−\frac{\mathrm{9}\pi}{\mathrm{64}}+\frac{\mathrm{25}\pi}{\mathrm{64}}=\frac{−\mathrm{2}\pi−\mathrm{9}\pi+\mathrm{25}\pi}{\mathrm{64}}=\frac{\mathrm{14}\pi}{\mathrm{64}}=\frac{\mathrm{7}\pi}{\mathrm{32}}\bigstar \\ $$

Commented by mnjuly1970 last updated on 25/Aug/21

thanks alot master brandon

$${thanks}\:{alot}\:{master}\:{brandon} \\ $$

Commented by Ar Brandon last updated on 25/Aug/21

You′re welcome Sir !

$$\mathrm{You}'\mathrm{re}\:\mathrm{welcome}\:\mathrm{Sir}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com