Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 152115 by peter frank last updated on 25/Aug/21

∫(dx/(asin x+bcos x))

dxasinx+bcosx

Answered by aleks041103 last updated on 26/Aug/21

∫(dx/(asin x+bcos x))=  =(1/( (√(a^2 +b^2 ))))∫(dx/(sin(x+r))), r=atan(b/a)  ∫(dx/(sin x))=∫((sin x dx)/(1−cos^2 x))=−∫(du/(1−u^2 ))=  =−(1/2)∫((1/(1−u))+(1/(1+u)))du  =−(1/2)ln(((1+u)/(1−u)))=ln(√((1−cos x)/(1+cos x)))+C  ∫(dx/(asin(x)+bcos(x)))=(1/( 2(√(a^2 +b^2 ))))ln(((1−cos(x+atan(b/a)))/(1+cos(x+atan(b/a)))))+C

dxasinx+bcosx==1a2+b2dxsin(x+r),r=atan(b/a)dxsinx=sinxdx1cos2x=du1u2==12(11u+11+u)du=12ln(1+u1u)=ln1cosx1+cosx+Cdxasin(x)+bcos(x)=12a2+b2ln(1cos(x+atan(b/a))1+cos(x+atan(b/a)))+C

Commented by peter frank last updated on 26/Aug/21

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com