Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 152141 by Ar Brandon last updated on 26/Aug/21

∫_0 ^(+∞) (((sinx)^(2n+1) )/x)dx=(π/2^(2n+1) ) (((2n)),(n) )

0+(sinx)2n+1xdx=π22n+1(2nn)

Answered by Olaf_Thorendsen last updated on 26/Aug/21

I_n  = ∫_0 ^(+∞) ((sin^(2n+1) x)/x) dx  Let f(x) = sin^(2n) x  I_n  = ∫_0 ^(+∞) ((sinx)/x)f(x) dx    f is a π−periodic function. We can  apply the Lobachevsky−Dirchlet  integral formula :  ∫_0 ^(+∞) ((sinx)/x)f(x) dx = ∫_0 ^(π/2) f(x)dx  ⇒ I_n  = ∫_0 ^(π/2) sin^(2n) x dx = W_(2n)  = (π/2).(((2n)!)/((2^n n!)^2 ))  (W_(2n)  : integral of Wallis)  I_n  = (π/2^(2n+1) ).(((2n)!)/(n!n!)) = (π/2^(2n+1) )C_n ^(2n)

In=0+sin2n+1xxdxLetf(x)=sin2nxIn=0+sinxxf(x)dxfisaπperiodicfunction.WecanapplytheLobachevskyDirchletintegralformula:0+sinxxf(x)dx=0π2f(x)dxIn=0π2sin2nxdx=W2n=π2.(2n)!(2nn!)2(W2n:integralofWallis)In=π22n+1.(2n)!n!n!=π22n+1Cn2n

Commented by Ar Brandon last updated on 26/Aug/21

Grac_ξ ias sen^  or !

Graext\ccciassenor!

Commented by puissant last updated on 26/Aug/21

hum

hum

Answered by Kamel last updated on 26/Aug/21

sin^(2n) (x)=Σ_(k=0) ^(2n) (((−1)^(2n−k) (−1)^n )/2^(2n) )C_(2n) ^k e^(ikx) e^(−i(2n−k)ix)                     =(1/2^(2n) )C_(2n) ^n +Σ_(k=0) ^(n−1) (((−1)^(n+k) )/2^(2n) )C_(2n) ^k e^(ikx) e^(−(2n−k)ix) +Σ_(k=0) ^(n−1) (((−1)^(n+k) )/2^(2n) )C_(2n) ^k e^(i(2n−k)x) e^(−ikx)                     =(1/2^(2n) )C_(2n) ^n +Σ_(k=0) ^(n−1) (((−1)^(n+k) )/2^(2n) )C_(2n) ^k (e^(−(2n−2k)ix) +e^(i(2n−2k)x) )                    =(1/2^(2n) )C_(2n) ^n +Σ_(k=0) ^(n−1) (((−1)^(n+k) )/2^(2n−1) )C_(2n) ^k cos(2n−2k)   ∴ ∫_0 ^(+∞) ((sin^(2n+1) (x))/x)dx =(1/2^(2n) )C_(2n) ^n ∫_0 ^(+∞) ((sin(x))/x)dx+Σ_(k=0) ^(n−1) (((−1)^(n+k) )/2^(2n) )C_(2n) ^k ∫_0 ^(+∞) ((sin((2n−2k+1)x)−sin((2n−2k−1)x))/x)dx   We have:     2n−2k+1>0, 2n−2k−1>0 ∀k=0,n−1^(−) , n≥1     ∴ ∫_0 ^(+∞) ((sin(ax))/x)dx=^(a>0) (π/2)  So  :  ∫_0 ^(+∞) ((sin^(2n+1) (x))/x)dx=(π/2^(2n+1) ) (((2n)),((  n)) )

sin2n(x)=2nk=0(1)2nk(1)n22nC2nkeikxei(2nk)ix=122nC2nn+n1k=0(1)n+k22nC2nkeikxe(2nk)ix+n1k=0(1)n+k22nC2nkei(2nk)xeikx=122nC2nn+n1k=0(1)n+k22nC2nk(e(2n2k)ix+ei(2n2k)x)=122nC2nn+n1k=0(1)n+k22n1C2nkcos(2n2k)0+sin2n+1(x)xdx=122nC2nn0+sin(x)xdx+n1k=0(1)n+k22nC2nk0+sin((2n2k+1)x)sin((2n2k1)x)xdxWehave:2n2k+1>0,2n2k1>0k=0,n1,n10+sin(ax)xdx=a>0π2So:0+sin2n+1(x)xdx=π22n+1(2nn)

Commented by Ar Brandon last updated on 26/Aug/21

Oh my! Thanks Sir

Ohmy!ThanksSir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com