Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 15217 by Mr Chheang Chantria last updated on 08/Jun/17

Answered by ajfour last updated on 08/Jun/17

   v=ab^2 +a^2 b+ac+bc     v =ab(a+b)+c(a+b)        =(a+b)(ab+c)≤(a+b)[(((a+b)^2 )/4)+c]    4v ≤(1−c)[(1−c)^2 +4c]    4v≤(1−c)(1+c)^2      [=f(x)]          ≤max[f(x)]   for  0≤x≤1        ∀ f(x)=(1−x)(1+x)^2   f ′(x)=−(1+x)^2 +2(1+x)(1−x)      =−(1+x)(1+x+2x−2)      =−3(1+x)(x−(1/3))   f ′(x)=0  at x=−1, (1/3)  Since   f(−1)=0, f ′(−1)=0,  f(0)=1,f ′(0)=1, f ′((1/3))=0,  f((1/3))=((32)/(27)) , f(1)=0  ,  so for   0≤x≤1, max[f(x)]=((32)/(27))    4v ≤ ((32)/(27))    ⇒ v=a(b^2 +c)+b(a^2 +c)≤(8/(27)) .

$$\:\:\:\boldsymbol{{v}}=\boldsymbol{{ab}}^{\mathrm{2}} +\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{b}}+\boldsymbol{{ac}}+\boldsymbol{{bc}} \\ $$$$\:\:\:\boldsymbol{{v}}\:=\boldsymbol{{ab}}\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)+\boldsymbol{{c}}\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right) \\ $$$$\:\:\:\:\:\:=\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)\left(\boldsymbol{{ab}}+\boldsymbol{{c}}\right)\leqslant\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)\left[\frac{\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} }{\mathrm{4}}+\boldsymbol{{c}}\right] \\ $$$$\:\:\mathrm{4}\boldsymbol{{v}}\:\leqslant\left(\mathrm{1}−\boldsymbol{{c}}\right)\left[\left(\mathrm{1}−\boldsymbol{{c}}\right)^{\mathrm{2}} +\mathrm{4}\boldsymbol{{c}}\right] \\ $$$$\:\:\mathrm{4}\boldsymbol{{v}}\leqslant\left(\mathrm{1}−\boldsymbol{{c}}\right)\left(\mathrm{1}+\boldsymbol{{c}}\right)^{\mathrm{2}} \:\:\:\:\:\left[={f}\left({x}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\leqslant\boldsymbol{{max}}\left[\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\right]\:\:\:{for}\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1} \\ $$$$\:\:\:\:\:\:\forall\:{f}\left({x}\right)=\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}\right)^{\mathrm{2}} \\ $$$${f}\:'\left({x}\right)=−\left(\mathrm{1}+{x}\right)^{\mathrm{2}} +\mathrm{2}\left(\mathrm{1}+{x}\right)\left(\mathrm{1}−{x}\right) \\ $$$$\:\:\:\:=−\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}+\mathrm{2}{x}−\mathrm{2}\right) \\ $$$$\:\:\:\:=−\mathrm{3}\left(\mathrm{1}+{x}\right)\left({x}−\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$\:{f}\:'\left({x}\right)=\mathrm{0}\:\:{at}\:{x}=−\mathrm{1},\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${Since} \\ $$$$\:{f}\left(−\mathrm{1}\right)=\mathrm{0},\:{f}\:'\left(−\mathrm{1}\right)=\mathrm{0}, \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{1},{f}\:'\left(\mathrm{0}\right)=\mathrm{1},\:{f}\:'\left(\frac{\mathrm{1}}{\mathrm{3}}\right)=\mathrm{0}, \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)=\frac{\mathrm{32}}{\mathrm{27}}\:,\:{f}\left(\mathrm{1}\right)=\mathrm{0}\:\:, \\ $$$${so}\:{for}\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1},\:\boldsymbol{{max}}\left[\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\right]=\frac{\mathrm{32}}{\mathrm{27}} \\ $$$$\:\:\mathrm{4}\boldsymbol{{v}}\:\leqslant\:\frac{\mathrm{32}}{\mathrm{27}}\:\: \\ $$$$\Rightarrow\:\boldsymbol{{v}}=\boldsymbol{{a}}\left(\boldsymbol{{b}}^{\mathrm{2}} +\boldsymbol{{c}}\right)+\boldsymbol{{b}}\left(\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{c}}\right)\leqslant\frac{\mathrm{8}}{\mathrm{27}}\:. \\ $$

Commented by mrW1 last updated on 08/Jun/17

brilliant method!

$$\mathrm{brilliant}\:\mathrm{method}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com