All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 152208 by SOMEDAVONG last updated on 26/Aug/21
1.for∀x>0.findthevalueofmto 1+log5(x2+1)⩾log5(mx2+4x+m)verify∀x.
Answered by Rasheed.Sindhi last updated on 26/Aug/21
1+log5(x2+1)⩾log5(mx2+4x+m) log55+log5(x2+1)⩾log5(mx2+4x+m) log5(5(x2+1))⩾log5(mx2+4x+m) 5(x2+1)⩾mx2+4x+m (5−m)x2−4x+5−m⩾0 Continue....
Commented bySOMEDAVONG last updated on 26/Aug/21
Thankssir
Commented by1549442205PVT last updated on 26/Aug/21
Putf(x)=(5−m)x2−4x+5−m i)Form=5weget−4x⩾0⇔x⩽0,soitisrejected ii)Form<5f(x)⩾0∀x>0ifandonlyif [f(x)havehastworootsx1⩽x2⩽0(2)△′=4+m(5−m)<0(1) (1)⇔−m2+5m+4<0⇔m2−5m−4>0 ⇔m∈(−∞,5−412)∪(5+412,∞) Combiningtotheconditionm<5weget m∈(−∞,5−412) (2)⇔{△′⩾0x1+x22=25−m⩽0⇔{m2−5m−4⩽0m⩾5thisiscontradictiontothehypothesisthatm<5 .Hencethiscasedon′toccur ii)Form>5don′texistm
Terms of Service
Privacy Policy
Contact: info@tinkutara.com