All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 152271 by peter frank last updated on 27/Aug/21
∫(3x−2)x2+x+1dx
Answered by qaz last updated on 27/Aug/21
A=∫(3x−2)x2+x+1dx=32∫(2x+1)x2+x+1dx−72∫x2+x+1dx=(x2+x+1)3/2−72B(x+12)2=34tan2θx=34tanθ−12dx=34sec2θdθB=34∫sec3θdθ=34(secθtanθ−∫tan2θsecθdθ)=34(secθtanθ−(∫(sec2θ−1)secθdθ)=34(12secθtanθ+12∫secθdθ)=34(12secθtanθ+12∫cosθdθ1−sin2θ)=34(12secθtanθ+14ln∣1−sinθ1+sinθ∣)+C=14(2x+1)x2+x+1+316ln∣x2+x+1−x−12x2+x+1+x+12∣+C⇒A=(x2+x+1)3/2−78(2x+1)x2+x+1−2132ln∣x2+x+1−x−12x2+x+1+x+12∣+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com