Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 152273 by peter frank last updated on 27/Aug/21

∫ ((tan θ+tan^3 θ)/(1+tan^3 θ))dθ

tanθ+tan3θ1+tan3θdθ

Answered by qaz last updated on 27/Aug/21

∫((tan θ+tan^3 θ)/(1+tan^3 θ))dθ  =∫((tan θ)/(1+tan^3 θ))d(tan θ)  =∫((xdx)/(1+x^3 ))  =∫(x/((x+1)(x^2 −x+1)))dx  =(1/3)∫(((x+1)/(x^2 −x+1))−(1/(x+1)))dx  =(1/6)∫((2x−1+3)/(x^2 −x+1))dx−(1/3)∫(1/(x+1))dx  =(1/6)ln∣x^2 −x+1∣+(1/6)∙(1/(2∙(√(3/4))))tan^(−1) ((x−(1/2))/( (√(3/4))))−(1/3)ln∣x+1∣+C  =(1/6)ln∣((x^2 −x+1)/((x+1)^2 ))∣+(1/( 6(√3)))tan^(−1) ((2x−1)/( (√3)))+C  =(1/6)ln∣((tan^2 θ−tan θ+1)/((tanθ+1)^2 ))∣+(1/( 6(√3)))tan^(−1) ((2tan θ−1)/( (√3)))+C

tanθ+tan3θ1+tan3θdθ=tanθ1+tan3θd(tanθ)=xdx1+x3=x(x+1)(x2x+1)dx=13(x+1x2x+11x+1)dx=162x1+3x2x+1dx131x+1dx=16lnx2x+1+161234tan1x123413lnx+1+C=16lnx2x+1(x+1)2+163tan12x13+C=16lntan2θtanθ+1(tanθ+1)2+163tan12tanθ13+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com