All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 152273 by peter frank last updated on 27/Aug/21
∫tanθ+tan3θ1+tan3θdθ
Answered by qaz last updated on 27/Aug/21
∫tanθ+tan3θ1+tan3θdθ=∫tanθ1+tan3θd(tanθ)=∫xdx1+x3=∫x(x+1)(x2−x+1)dx=13∫(x+1x2−x+1−1x+1)dx=16∫2x−1+3x2−x+1dx−13∫1x+1dx=16ln∣x2−x+1∣+16⋅12⋅34tan−1x−1234−13ln∣x+1∣+C=16ln∣x2−x+1(x+1)2∣+163tan−12x−13+C=16ln∣tan2θ−tanθ+1(tanθ+1)2∣+163tan−12tanθ−13+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com