All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 152275 by peter frank last updated on 27/Aug/21
∫0π2sin2xlog(tanx)dx
Answered by qaz last updated on 27/Aug/21
∫0π/2sin2x⋅lntanxdx=2∫0π/2sinxcosx(lnsinx−lncosx)dx={∫lnsinxd(sin2x)+∫lncosxd(cos2x)}0π/2=sin2xlnsinx+cos2xlncosx∣0π/2=0
Answered by mnjuly1970 last updated on 27/Aug/21
I=∫0π2sin(2x)ln(tan(x))dx...(1)I=∫0π2sin(2x).ln(cot(x))dx...(2)(1)+(2):2I=∫0π2sin(2x)ln(1)=0I=0...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com