Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 152388 by ajfour last updated on 28/Aug/21

Commented by ajfour last updated on 28/Aug/21

Find the maximum speed u,  that can be given to the solid  ball, so that it goes through the  paraboloid ditch y=x^2 −b^2   and emerges out at speed u,  having purely rolled all along.  (assume upper limit of coeff.    of friction to be μ everywhere)

$${Find}\:{the}\:{maximum}\:{speed}\:{u}, \\ $$$${that}\:{can}\:{be}\:{given}\:{to}\:{the}\:{solid} \\ $$$${ball},\:{so}\:{that}\:{it}\:{goes}\:{through}\:{the} \\ $$$${paraboloid}\:{ditch}\:{y}={x}^{\mathrm{2}} −{b}^{\mathrm{2}} \\ $$$${and}\:{emerges}\:{out}\:{at}\:{speed}\:{u}, \\ $$$${having}\:{purely}\:{rolled}\:{all}\:{along}. \\ $$$$\left({assume}\:{upper}\:{limit}\:{of}\:{coeff}.\:\right. \\ $$$$\left.\:{of}\:{friction}\:{to}\:{be}\:\mu\:{everywhere}\right) \\ $$

Commented by mr W last updated on 28/Aug/21

seems to be very hard

$${seems}\:{to}\:{be}\:{very}\:{hard} \\ $$

Commented by ajfour last updated on 28/Aug/21

Commented by ajfour last updated on 29/Aug/21

say at vertex ball is given a  max rolling speed so that it  cones over without slipping.  so, consider v reversed in  diagram above.  I=(2/5)mr^2 +mr^2 =I_0 +A  (1/2)I(ω_0 ^2 −ω^2 )=mg(b^2 +rcos θ)  ⇒  (7/(10))(u^2 −v^2 )=g(b^2 +rcos θ)  {  v^2 =u^2 −((10g)/7)(b^2 +rcos θ)  }  ★  differentiating wrt θ  [    ((mvdv)/(rdθ))=((5mgsin θ)/7)   ]   ★  mgcos θ−N=((mv^2 )/r)  ⇒  N=m(gcos θ−(v^2 /r))  (normal rxn goes ↓ with θ)  mgsin θ−f=m((vdv)/(rdθ))  dynamic   μ=(f/N) ≤μ_0  (in Q)     mgsin θ−((mdv)/(rdθ))=μm(gcos θ−(v^2 /r))    μ(u,θ)=((grsin θ−((10grsin θ)/7)+u^2 )/((grcos θ−v^2 )))  μ(u,θ)=((grsin θ−((10grsin θ)/7)+u^2 )/(grcos θ−u^2 +((10g)/7)(b^2 +rcos θ)))  μ(u,θ)=((7(u^2 /gr)−3sin θ)/(17cos θ+10(b^2 /r)−7(u^2 /gr)))  (∂μ/∂θ)=(((−3cos θ){17cos θ+10B−7U}−{7U−3sin θ}(−17sin θ))/([17U+10B−7U]^2 ))  (∂μ/∂θ)=0  ⇒  51cos^2 θ+30Bcos θ−21Ucos θ    =119Usin θ−51sin^2 θ  ⇒  U(21cos θ+119sin θ)=51+30Bcos θ      .......∗∗  Now    μ(θ)=((7U−3sin θ)/(17cos θ+10B−7U))=μ_0   hence  7(1+μ_0 )(((51+30Bcos θ)/(21cos θ+119sin θ)))     = 3sin θ+μ_0 (17cos θ+10B)  from above we get θ=δ  U=((51+30Bcos δ)/(21cos δ+119sin δ))   U=(u^2 /(rg))     then for θ=0°  {  v^2 =u^2 −((10g)/7)(b^2 +rcos θ)  }  ★  gives  (v^2 )_Q =rg(((51+30Bcos δ)/(21cos δ+119sin δ)))                   −((10g)/7)(b^2 +r)     _____________________

$${say}\:{at}\:{vertex}\:{ball}\:{is}\:{given}\:{a} \\ $$$${max}\:{rolling}\:{speed}\:{so}\:{that}\:{it} \\ $$$${cones}\:{over}\:{without}\:{slipping}. \\ $$$${so},\:{consider}\:{v}\:{reversed}\:{in} \\ $$$${diagram}\:{above}. \\ $$$${I}=\frac{\mathrm{2}}{\mathrm{5}}{mr}^{\mathrm{2}} +{mr}^{\mathrm{2}} ={I}_{\mathrm{0}} +{A} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{I}\left(\omega_{\mathrm{0}} ^{\mathrm{2}} −\omega^{\mathrm{2}} \right)={mg}\left({b}^{\mathrm{2}} +{r}\mathrm{cos}\:\theta\right) \\ $$$$\Rightarrow\:\:\frac{\mathrm{7}}{\mathrm{10}}\left({u}^{\mathrm{2}} −{v}^{\mathrm{2}} \right)={g}\left({b}^{\mathrm{2}} +{r}\mathrm{cos}\:\theta\right) \\ $$$$\left\{\:\:{v}^{\mathrm{2}} ={u}^{\mathrm{2}} −\frac{\mathrm{10}{g}}{\mathrm{7}}\left({b}^{\mathrm{2}} +{r}\mathrm{cos}\:\theta\right)\:\:\right\}\:\:\bigstar \\ $$$${differentiating}\:{wrt}\:\theta \\ $$$$\left[\:\:\:\:\frac{{mvdv}}{{rd}\theta}=\frac{\mathrm{5}{mg}\mathrm{sin}\:\theta}{\mathrm{7}}\:\:\:\right]\:\:\:\bigstar \\ $$$${mg}\mathrm{cos}\:\theta−{N}=\frac{{mv}^{\mathrm{2}} }{{r}} \\ $$$$\Rightarrow\:\:{N}={m}\left({g}\mathrm{cos}\:\theta−\frac{{v}^{\mathrm{2}} }{{r}}\right) \\ $$$$\left({normal}\:{rxn}\:{goes}\:\downarrow\:{with}\:\theta\right) \\ $$$${mg}\mathrm{sin}\:\theta−{f}={m}\frac{{vdv}}{{rd}\theta} \\ $$$${dynamic}\:\:\:\mu=\frac{{f}}{{N}}\:\leqslant\mu_{\mathrm{0}} \:\left({in}\:{Q}\right) \\ $$$$\:\:\:{mg}\mathrm{sin}\:\theta−\frac{{mdv}}{{rd}\theta}=\mu{m}\left({g}\mathrm{cos}\:\theta−\frac{{v}^{\mathrm{2}} }{{r}}\right) \\ $$$$ \\ $$$$\mu\left({u},\theta\right)=\frac{{gr}\mathrm{sin}\:\theta−\frac{\mathrm{10}{gr}\mathrm{sin}\:\theta}{\mathrm{7}}+{u}^{\mathrm{2}} }{\left({gr}\mathrm{cos}\:\theta−{v}^{\mathrm{2}} \right)} \\ $$$$\mu\left({u},\theta\right)=\frac{{gr}\mathrm{sin}\:\theta−\frac{\mathrm{10}{gr}\mathrm{sin}\:\theta}{\mathrm{7}}+{u}^{\mathrm{2}} }{{gr}\mathrm{cos}\:\theta−{u}^{\mathrm{2}} +\frac{\mathrm{10}{g}}{\mathrm{7}}\left({b}^{\mathrm{2}} +{r}\mathrm{cos}\:\theta\right)} \\ $$$$\mu\left({u},\theta\right)=\frac{\mathrm{7}\left({u}^{\mathrm{2}} /{gr}\right)−\mathrm{3sin}\:\theta}{\mathrm{17cos}\:\theta+\mathrm{10}\left({b}^{\mathrm{2}} /{r}\right)−\mathrm{7}\left({u}^{\mathrm{2}} /{gr}\right)} \\ $$$$\frac{\partial\mu}{\partial\theta}=\frac{\left(−\mathrm{3cos}\:\theta\right)\left\{\mathrm{17cos}\:\theta+\mathrm{10}{B}−\mathrm{7}{U}\right\}−\left\{\mathrm{7}{U}−\mathrm{3sin}\:\theta\right\}\left(−\mathrm{17sin}\:\theta\right)}{\left[\mathrm{17}{U}+\mathrm{10}{B}−\mathrm{7}{U}\right]^{\mathrm{2}} } \\ $$$$\frac{\partial\mu}{\partial\theta}=\mathrm{0}\:\:\Rightarrow \\ $$$$\mathrm{51cos}\:^{\mathrm{2}} \theta+\mathrm{30}{B}\mathrm{cos}\:\theta−\mathrm{21}{U}\mathrm{cos}\:\theta \\ $$$$\:\:=\mathrm{119}{U}\mathrm{sin}\:\theta−\mathrm{51sin}\:^{\mathrm{2}} \theta \\ $$$$\Rightarrow\:\:{U}\left(\mathrm{21cos}\:\theta+\mathrm{119sin}\:\theta\right)=\mathrm{51}+\mathrm{30}{B}\mathrm{cos}\:\theta \\ $$$$\:\:\:\:.......\ast\ast \\ $$$${Now}\: \\ $$$$\:\mu\left(\theta\right)=\frac{\mathrm{7}{U}−\mathrm{3sin}\:\theta}{\mathrm{17cos}\:\theta+\mathrm{10}{B}−\mathrm{7}{U}}=\mu_{\mathrm{0}} \\ $$$${hence} \\ $$$$\mathrm{7}\left(\mathrm{1}+\mu_{\mathrm{0}} \right)\left(\frac{\mathrm{51}+\mathrm{30}{B}\mathrm{cos}\:\theta}{\mathrm{21cos}\:\theta+\mathrm{119sin}\:\theta}\right) \\ $$$$\:\:\:=\:\mathrm{3sin}\:\theta+\mu_{\mathrm{0}} \left(\mathrm{17cos}\:\theta+\mathrm{10}{B}\right) \\ $$$${from}\:{above}\:{we}\:{get}\:\theta=\delta \\ $$$${U}=\frac{\mathrm{51}+\mathrm{30}{B}\mathrm{cos}\:\delta}{\mathrm{21cos}\:\delta+\mathrm{119sin}\:\delta}\: \\ $$$${U}=\frac{{u}^{\mathrm{2}} }{{rg}}\:\:\:\:\:{then}\:{for}\:\theta=\mathrm{0}° \\ $$$$\left\{\:\:{v}^{\mathrm{2}} ={u}^{\mathrm{2}} −\frac{\mathrm{10}{g}}{\mathrm{7}}\left({b}^{\mathrm{2}} +{r}\mathrm{cos}\:\theta\right)\:\:\right\}\:\:\bigstar \\ $$$${gives} \\ $$$$\left({v}^{\mathrm{2}} \right)_{{Q}} ={rg}\left(\frac{\mathrm{51}+\mathrm{30}{B}\mathrm{cos}\:\delta}{\mathrm{21cos}\:\delta+\mathrm{119sin}\:\delta}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\frac{\mathrm{10}{g}}{\mathrm{7}}\left({b}^{\mathrm{2}} +{r}\right) \\ $$$$\:\:\:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$

Commented by ajfour last updated on 29/Aug/21

have assumed r≤R  (d^2 y/dx^2 )=2   &  from  x^2 +(y−R)^2 =R^2   2x+2(y−R)(dy/dx)=0  (dy/dx)=(x/(R−y))  (d^2 y/dx^2 )=((R−y+(x^2 /(R−y)))/((R−y)^2 ))=2  ⇒   now  x=0 , y=0  ⇒   R=(1/2)    so    r≤R=(1/2) unit  unit comes from  unit of y  of parabola.  say if  track is 1m deep, then  width is 2m; while r≤(1/2)m.

$${have}\:{assumed}\:{r}\leqslant{R} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{2}\:\:\:\&\:\:{from} \\ $$$${x}^{\mathrm{2}} +\left({y}−{R}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\mathrm{2}{x}+\mathrm{2}\left({y}−{R}\right)\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\frac{{dy}}{{dx}}=\frac{{x}}{{R}−{y}} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{{R}−{y}+\frac{{x}^{\mathrm{2}} }{{R}−{y}}}{\left({R}−{y}\right)^{\mathrm{2}} }=\mathrm{2} \\ $$$$\Rightarrow\:\:\:{now}\:\:{x}=\mathrm{0}\:,\:{y}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{R}=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:{so}\:\:\:\:{r}\leqslant{R}=\frac{\mathrm{1}}{\mathrm{2}}\:{unit} \\ $$$${unit}\:{comes}\:{from}\:\:{unit}\:{of}\:{y} \\ $$$${of}\:{parabola}. \\ $$$${say}\:{if}\:\:{track}\:{is}\:\mathrm{1}{m}\:{deep},\:{then} \\ $$$${width}\:{is}\:\mathrm{2}{m};\:{while}\:{r}\leqslant\frac{\mathrm{1}}{\mathrm{2}}{m}. \\ $$

Commented by mr W last updated on 29/Aug/21

i think in mgcos θ−N=((mv^2 )/r)  r should be the radius of the locus  of the center of the ball,not the   radius of the ball.

$${i}\:{think}\:{in}\:{mg}\mathrm{cos}\:\theta−{N}=\frac{{mv}^{\mathrm{2}} }{{r}} \\ $$$${r}\:{should}\:{be}\:{the}\:{radius}\:{of}\:{the}\:{locus} \\ $$$${of}\:{the}\:{center}\:{of}\:{the}\:{ball},{not}\:{the}\: \\ $$$${radius}\:{of}\:{the}\:{ball}. \\ $$$$ \\ $$

Commented by ajfour last updated on 29/Aug/21

ball is turning about the edge  so center of ball goes about the  edge in a circle of radius r only.

$${ball}\:{is}\:{turning}\:{about}\:{the}\:{edge} \\ $$$${so}\:{center}\:{of}\:{ball}\:{goes}\:{about}\:{the} \\ $$$${edge}\:{in}\:{a}\:{circle}\:{of}\:{radius}\:{r}\:{only}. \\ $$

Commented by mr W last updated on 29/Aug/21

yes, at that point.

$${yes},\:{at}\:{that}\:{point}. \\ $$

Answered by mr W last updated on 28/Aug/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com