Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 152464 by mathdanisur last updated on 28/Aug/21

Answered by mindispower last updated on 29/Aug/21

((sin(z))/z)=Π_(n≥1) (1−(z^2 /(n^2 π^2 )))  ((sh(t))/t)=Π_(n≥1) (1+(t^2 /(n^2 π^2 )))  ln(((sh(t))/t))=Σ_(n≥1) ln(1+(t^2 /(n^2 π^2 )))  Σ_(n≥1) ∫_0 ^1 ((ln^(2m) (t)Σ_(k≥0) (−1)^k ((t^2 /(n^2 π^2 )))^(k+1) (1/(k+1)))/t)  =Σ_(n≥1) Σ_(k≥1) (1/k).(1/((nπ)^(2k) ))∫_0 ^1 (−1)^(k−1) t^(2k−1) ln^(2m) (t)dt  =Σ_(k≥1) (((−1)^(k−1) )/k)Σ_(n≥1) (1/((nπ)^(2k) ))∫_0 ^∞ e^(−(2k)x) x^(2m) dx  =Σ_(k≥1) (((−1)^(k−1) )/(k+1))Σ_(n≥1) ((1/(nπ)))^(2k) ((Γ(2m+1))/((2k)^(2m+1) ))  =Σ_(k≥1) (((−1)^(k−1) )/(k+1)).(((2m)!)/((2k)^(2m+1) .π^(2k) ))ζ(2k)...A  ζ(2k)=B_(2k) .(2^(2k−1) /((2k)!))π^(2k)   A⇔Σ_(k≥1) (((−1)^(k−1) )/k).(((2m)!)/((2k)^(2m+1) π^(2k) )).2^(2k−1) π^(2k) .(1/((2k)!))B_(2k)   =Σ_(k≥1) (((−1)^(k−1) )/k).((2^(2(k−m−1)) (2m)!)/(k^(2m+1) (2k)!))B_(2k)   =Σ_(k≥1) (((−1)^(k−1) 2^(2(k−m−1)) (2m)!)/(k^(2(m+1)) (2k)!))B_(2k)

sin(z)z=n1(1z2n2π2)sh(t)t=n1(1+t2n2π2)ln(sh(t)t)=n1ln(1+t2n2π2)n101ln2m(t)k0(1)k(t2n2π2)k+11k+1t=n1k11k.1(nπ)2k01(1)k1t2k1ln2m(t)dt=k1(1)k1kn11(nπ)2k0e(2k)xx2mdx=k1(1)k1k+1n1(1nπ)2kΓ(2m+1)(2k)2m+1=k1(1)k1k+1.(2m)!(2k)2m+1.π2kζ(2k)...Aζ(2k)=B2k.22k1(2k)!π2kAk1(1)k1k.(2m)!(2k)2m+1π2k.22k1π2k.1(2k)!B2k=k1(1)k1k.22(km1)(2m)!k2m+1(2k)!B2k=k1(1)k122(km1)(2m)!k2(m+1)(2k)!B2k

Commented by mathdanisur last updated on 29/Aug/21

Thank you Ser

ThankyouSer

Terms of Service

Privacy Policy

Contact: info@tinkutara.com