Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 152481 by mathdanisur last updated on 28/Aug/21

Commented by Rasheed.Sindhi last updated on 29/Aug/21

Some solutions:  (x,y,z)=(3,3,8),(3,8,3),(8,3,3)

Somesolutions:(x,y,z)=(3,3,8),(3,8,3),(8,3,3)

Answered by Rasheed.Sindhi last updated on 29/Aug/21

(1+(1/x))(1+(1/y))(1+(1/z))=2;    x,y,z∈Z^+   (x+1)(y+1)(z+1)=2xyz  ⇒At least one of x+1,y+1,z+1 is even  ⇒At least one of x,y,z is an odd.  Let x=2k−1:   2k(y+1)(z+1)=2(2k−1)yz   k(y+1)(z+1)=(2k−1)yz     kyz+ky+kz+k=(2k−1)yz  (2k−1)yz−kyz=ky+kz+k   (k−1)yz=k(y+z+1)  ⇒k∣(k−1)yz  ⇒ { ((k∣(k−1)⇒k=1)),((k∣yz⇒k∣yz ∨ k∣y ∨ k∣z)) :}  Case1: k=1⇒x=2k−1=2(1)−1=1  (1+(1/x))(1+(1/y))(1+(1/z))=2  ⇒(1+(1/1))(1+(1/y))(1+(1/z))=2       (1+(1/y))(1+(1/z))=1        1+(1/y)=(1+(1/z))^(−1) =(z/(z+1))        ((y+1)/y)=(z/(z+1))  yz=yz+y+z+1⇒y+z=−1(×)  (∵y,z∈Z^+ ⇒y+z ≠−1)  k≠1⇒x≠1⇒y≠1⇒z≠1  Case2: k∣y   (k−1)yz=k(y+z+1)  y=km: km(k−1)z=k(km+z+1)        m(k−1)z=km+z+1        m(k−1)z−z=km+1        (km−m−1)z=km+1           z=((km+1)/(km−m−1))  k=2,m=4⇒              z=((8+1)/(8−4−1))=(9/3)=3  y=8 ⇒x=2(2)−1=3  Verification:  (1+(1/x))(1+(1/y))(1+(1/z))=2;    x,y,z∈Z^+   (1+(1/3))(1+(1/8))(1+(1/3))=2  (4/3)×(9/8)×(4/3)=2  2=2   Continue...

(1+1x)(1+1y)(1+1z)=2;x,y,zZ+(x+1)(y+1)(z+1)=2xyzAtleastoneofx+1,y+1,z+1isevenAtleastoneofx,y,zisanodd.Letx=2k1:2k(y+1)(z+1)=2(2k1)yzk(y+1)(z+1)=(2k1)yzkyz+ky+kz+k=(2k1)yz(2k1)yzkyz=ky+kz+k(k1)yz=k(y+z+1)k(k1)yz{k(k1)k=1kyzkyzkykzCase1:k=1x=2k1=2(1)1=1(1+1x)(1+1y)(1+1z)=2(1+11)(1+1y)(1+1z)=2(1+1y)(1+1z)=11+1y=(1+1z)1=zz+1y+1y=zz+1yz=yz+y+z+1y+z=1(×)(y,zZ+y+z1)k1x1y1z1Case2:ky(k1)yz=k(y+z+1)y=km:km(k1)z=k(km+z+1)m(k1)z=km+z+1m(k1)zz=km+1(kmm1)z=km+1z=km+1kmm1k=2,m=4z=8+1841=93=3y=8x=2(2)1=3Verification:(1+1x)(1+1y)(1+1z)=2;x,y,zZ+(1+13)(1+18)(1+13)=243×98×43=22=2Continue...

Commented by mathdanisur last updated on 29/Aug/21

Very nice Ser  Ans:(3;8;3)(....) (3;4;5)(...) (2;5;9)(...) (2;6;7)(...) (2;4;15)(...)

VeryniceSerAns:(3;8;3)(....)(3;4;5)(...)(2;5;9)(...)(2;6;7)(...)(2;4;15)(...)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com