Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 152496 by mathdanisur last updated on 28/Aug/21

Answered by qaz last updated on 29/Aug/21

Σ_(n=1) ^∞ (x^(4n) /((4n)!))=(x^4 /(4!))+(x^8 /(8!))+(x^(12) /(12!))+...  =(1/2)[(1−(x^2 /(2!))+(x^4 /(4!))−...)+(1+(x^2 /(2!))+(x^4 /(4!))+...)]−1  =(1/2)cos x+(1/2)cosh x−1  ⇒Σ_(n=1) ^∞ (1/((4n)!))((π/6))^(4n) =(1/2)cos (π/6)+(1/2)cosh (π/6)−1=(1/4)(e^(π/6) +e^(−π/6) )−((4−(√3))/4)

n=1x4n(4n)!=x44!+x88!+x1212!+...=12[(1x22!+x44!...)+(1+x22!+x44!+...)]1=12cosx+12coshx1n=11(4n)!(π6)4n=12cosπ6+12coshπ61=14(eπ/6+eπ/6)434

Commented by mathdanisur last updated on 29/Aug/21

thankyou Ser

thankyouSer

Terms of Service

Privacy Policy

Contact: info@tinkutara.com