Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 152532 by mondli66 last updated on 29/Aug/21

Answered by amin96 last updated on 29/Aug/21

 { ((0+y+3z=−4)),((x+2y+z=7)),((x−2y+0=1)) :}   ⇒   ((1,2,1,7),(1,(−2),0,1),(0,1,3,(−4)) )^((1)−(1)) =  = ((1,2,1,7),(0,4,1,6),(0,1,3,(−4)) )^((3)×4−(2)) = ((1,2,1,7),(0,4,1,6),(0,0,(11),(−22)) )   { ((x+2y+z=7)),((4y+z=6)),((11z=−22)) :}  ⇒ z=−2 ⇒ y=2  ⇒x=5  answer   (5; 2 ; −2)

$$\begin{cases}{\mathrm{0}+{y}+\mathrm{3}{z}=−\mathrm{4}}\\{{x}+\mathrm{2}{y}+{z}=\mathrm{7}}\\{{x}−\mathrm{2}{y}+\mathrm{0}=\mathrm{1}}\end{cases}\:\:\:\Rightarrow\:\:\begin{pmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{1}}&{\mathrm{7}}\\{\mathrm{1}}&{−\mathrm{2}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{3}}&{−\mathrm{4}}\end{pmatrix}^{\left(\mathrm{1}\right)−\left(\mathrm{1}\right)} = \\ $$$$=\begin{pmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{1}}&{\mathrm{7}}\\{\mathrm{0}}&{\mathrm{4}}&{\mathrm{1}}&{\mathrm{6}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{3}}&{−\mathrm{4}}\end{pmatrix}^{\left(\mathrm{3}\right)×\mathrm{4}−\left(\mathrm{2}\right)} =\begin{pmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{1}}&{\mathrm{7}}\\{\mathrm{0}}&{\mathrm{4}}&{\mathrm{1}}&{\mathrm{6}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{11}}&{−\mathrm{22}}\end{pmatrix} \\ $$$$\begin{cases}{{x}+\mathrm{2}{y}+{z}=\mathrm{7}}\\{\mathrm{4}{y}+{z}=\mathrm{6}}\\{\mathrm{11}{z}=−\mathrm{22}}\end{cases}\:\:\Rightarrow\:{z}=−\mathrm{2}\:\Rightarrow\:{y}=\mathrm{2}\:\:\Rightarrow{x}=\mathrm{5} \\ $$$${answer}\:\:\:\left(\mathrm{5};\:\mathrm{2}\:;\:−\mathrm{2}\right) \\ $$$$ \\ $$

Commented by amin96 last updated on 29/Aug/21

Gauss method

$${Gauss}\:{method} \\ $$

Commented by SANOGO last updated on 29/Aug/21

Commented by KONE last updated on 29/Aug/21

K=∫_(1/2) ^2 (1+(1/x^2 ))arctan(x)dx  posont t=(1/x)⇔dx=−(1/t^2 )dt  x=2⇔t=(1/2);  x=(1/2)⇔t=2  K=∫_2 ^(1/2) (1+t^2 )arctan((1/t))×(−(1/t^2 ))dt  =∫_(1/2) ^2 (1+(1/t^2 ))arctan((1/t))dt  2K=∫_(1/2) ^2 (1+(1/x^2 ))arctan(x)dx+∫_(1/2) ^2 (1+(1/t^2 ))arctan((1/t))dt  =∫_(1/2) ^2 (1+(1/x^2 ))(arctan(x)+arctan((1/x)))dx car x et t son muette  on sait que x>0  arctan(x)+arctan((1/x))=(Π/2)  d′ou 2K=(Π/2)∫_(1/2) ^2 (1+(1/x^2 ))dx  K=(Π/4)[x−(1/x)]_(1/2) ^2 =(Π/4)[2−(1/2)−(1/2)+2]  K=((3Π)/4)         KAB

$${K}=\int_{\mathrm{1}/\mathrm{2}} ^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){arctan}\left({x}\right){dx} \\ $$$${posont}\:{t}=\frac{\mathrm{1}}{{x}}\Leftrightarrow{dx}=−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }{dt} \\ $$$${x}=\mathrm{2}\Leftrightarrow{t}=\frac{\mathrm{1}}{\mathrm{2}};\:\:{x}=\frac{\mathrm{1}}{\mathrm{2}}\Leftrightarrow{t}=\mathrm{2} \\ $$$${K}=\int_{\mathrm{2}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}+{t}^{\mathrm{2}} \right){arctan}\left(\frac{\mathrm{1}}{{t}}\right)×\left(−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right){dt} \\ $$$$=\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right){arctan}\left(\frac{\mathrm{1}}{{t}}\right){dt} \\ $$$$\mathrm{2}{K}=\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){arctan}\left({x}\right){dx}+\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right){arctan}\left(\frac{\mathrm{1}}{{t}}\right){dt} \\ $$$$=\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\left({arctan}\left({x}\right)+{arctan}\left(\frac{\mathrm{1}}{{x}}\right)\right){dx}\:{car}\:{x}\:{et}\:{t}\:{son}\:{muette} \\ $$$${on}\:{sait}\:{que}\:{x}>\mathrm{0}\:\:{arctan}\left({x}\right)+{arctan}\left(\frac{\mathrm{1}}{{x}}\right)=\frac{\Pi}{\mathrm{2}} \\ $$$${d}'{ou}\:\mathrm{2}{K}=\frac{\Pi}{\mathrm{2}}\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){dx} \\ $$$${K}=\frac{\Pi}{\mathrm{4}}\left[{x}−\frac{\mathrm{1}}{{x}}\right]_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{2}} =\frac{\Pi}{\mathrm{4}}\left[\mathrm{2}−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}\right] \\ $$$${K}=\frac{\mathrm{3}\Pi}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\underline{\mathscr{KAB}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com