All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 152608 by ZiYangLee last updated on 30/Aug/21
Byusingthesubstitutionx=cos2θ,provethat∫1+x1−xdx=−sin2θ−2θ+C
Answered by Olaf_Thorendsen last updated on 30/Aug/21
F(x)=∫1+x1−xdxF(θ)=∫1+cos2θ1−cos2θ(−2sin2θdθ)F(θ)=∫2cos2θ2sin2θ(−4sinθcosθdθ)F(θ)=∫∣cotθ∣(−4sinθcosθdθ)F(θ)=−4∫cos2θdθ)F(θ)=−2∫(1+cos2θ)dθ)F(θ)=−2(θ+12sin2θ)F(θ)=−sin2θ−2θ+C
Commented by puissant last updated on 30/Aug/21
GenialMr!!!
Answered by Ar Brandon last updated on 30/Aug/21
I=∫1+x1−xdx,x=cos2ϑ=−2∫1+cos2ϑ1−cos2ϑ⋅sin2ϑdϑ=−2∫1+cos2ϑ1−cos22ϑ⋅sin2ϑdϑ=−2∫1+cos2ϑ∣sin2ϑ∣⋅sin2ϑdϑ=∓2∫(1+cos2ϑ)dϑ=∓(2ϑ+sin2ϑ)+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com