Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 152625 by Dandelion last updated on 30/Aug/21

x^4 +c_3 x^3 +c_2 x^2 +c_1 x+c_0 =0  for c_n ∈R this can have  4 unique zeros ∈R  2 unique zeros + 1 double zero ∈R  2 double zeros ∈R  1 triple + 1 unique zeros ∈R  1 fourfold zero ∈R  2 unique zeros ∈R + 1 pair of complex zeros  1 double zero ∈R + 1 pair of complex zeros  2 pairs of complex zeros  2 double imaginary zeros    for given c_n ; can we decide which case we  have without solving?

$${x}^{\mathrm{4}} +{c}_{\mathrm{3}} {x}^{\mathrm{3}} +{c}_{\mathrm{2}} {x}^{\mathrm{2}} +{c}_{\mathrm{1}} {x}+{c}_{\mathrm{0}} =\mathrm{0} \\ $$$$\mathrm{for}\:{c}_{{n}} \in\mathbb{R}\:\mathrm{this}\:\mathrm{can}\:\mathrm{have} \\ $$$$\mathrm{4}\:\mathrm{unique}\:\mathrm{zeros}\:\in\mathbb{R} \\ $$$$\mathrm{2}\:\mathrm{unique}\:\mathrm{zeros}\:+\:\mathrm{1}\:\mathrm{double}\:\mathrm{zero}\:\in\mathbb{R} \\ $$$$\mathrm{2}\:\mathrm{double}\:\mathrm{zeros}\:\in\mathbb{R} \\ $$$$\mathrm{1}\:\mathrm{triple}\:+\:\mathrm{1}\:\mathrm{unique}\:\mathrm{zeros}\:\in\mathbb{R} \\ $$$$\mathrm{1}\:\mathrm{fourfold}\:\mathrm{zero}\:\in\mathbb{R} \\ $$$$\mathrm{2}\:\mathrm{unique}\:\mathrm{zeros}\:\in\mathbb{R}\:+\:\mathrm{1}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{complex}\:\mathrm{zeros} \\ $$$$\mathrm{1}\:\mathrm{double}\:\mathrm{zero}\:\in\mathbb{R}\:+\:\mathrm{1}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{complex}\:\mathrm{zeros} \\ $$$$\mathrm{2}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{complex}\:\mathrm{zeros} \\ $$$$\mathrm{2}\:\mathrm{double}\:\mathrm{imaginary}\:\mathrm{zeros} \\ $$$$ \\ $$$$\mathrm{for}\:\mathrm{given}\:{c}_{{n}} ;\:\mathrm{can}\:\mathrm{we}\:\mathrm{decide}\:\mathrm{which}\:\mathrm{case}\:\mathrm{we} \\ $$$$\mathrm{have}\:\mathrm{without}\:\mathrm{solving}? \\ $$

Commented by Dandelion last updated on 30/Aug/21

...is there a D (or Δ) similar to polynomes  of 2nd and 3rd degree?

$$...\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:{D}\:\left(\mathrm{or}\:\Delta\right)\:\mathrm{similar}\:\mathrm{to}\:\mathrm{polynomes} \\ $$$$\mathrm{of}\:\mathrm{2nd}\:\mathrm{and}\:\mathrm{3rd}\:\mathrm{degree}? \\ $$

Commented by MJS_new last updated on 31/Aug/21

it′s a bit complicated. I′ll post the answer  later...

$$\mathrm{it}'\mathrm{s}\:\mathrm{a}\:\mathrm{bit}\:\mathrm{complicated}.\:\mathrm{I}'\mathrm{ll}\:\mathrm{post}\:\mathrm{the}\:\mathrm{answer} \\ $$$$\mathrm{later}... \\ $$

Answered by MJS_new last updated on 02/Sep/21

x^4 +c_3 x^3 +c_2 x^2 +c_1 x+c_0 =0  1. let x=t−(c_3 /4) and rename the new constants  ⇒  t^4 +pt^2 +qt+r=0    D_1 =16p^4 r−4p^3 q^2 −128p^2 r^2 +144pq^2 r−27q^4 +256r^3   D_2 =p^2 +12r  D_3 =−p^2 +4r    (1) D_1 <0  ⇒ 2 unique real + 1 pair of conjugated complex solutions    (2) D_1 >0∧p<0∧D_3 <0  ⇒ 4 unique real solutions    (3) D_1 >0∧(p>0∨D_3 >0)  ⇒ 2 pairs of conjugated complex solutions    (4) D_1 =0∧p<0∧D_3 <0∧D_2 ≠0  ⇒ 1 real double + 2 unique real solutions    (5) D_1 =0∧(D_3 >0∨p>0∧(D_3 ≠0∨q≠0))  ⇒ 1 real double + 1 pair of conjugated complex solutions    (6) D_1 =0∧D_2 =0∧D_3 ≠0  ⇒ 1 real triple + 1 unique real solutions    (7) D_1 =0∧D_3 =0∧p<0  ⇒ 2 real double solutions    (8) D_1 =0∧D_3 =0∧p>0∧q=0  ⇒ 2 imaginary double solutions    (9) D_1 =0∧D_2 =0  ⇒ 1 real fourfold solution

$${x}^{\mathrm{4}} +{c}_{\mathrm{3}} {x}^{\mathrm{3}} +{c}_{\mathrm{2}} {x}^{\mathrm{2}} +{c}_{\mathrm{1}} {x}+{c}_{\mathrm{0}} =\mathrm{0} \\ $$$$\mathrm{1}.\:\mathrm{let}\:{x}={t}−\frac{{c}_{\mathrm{3}} }{\mathrm{4}}\:\mathrm{and}\:\mathrm{rename}\:\mathrm{the}\:\mathrm{new}\:\mathrm{constants} \\ $$$$\Rightarrow \\ $$$${t}^{\mathrm{4}} +{pt}^{\mathrm{2}} +{qt}+{r}=\mathrm{0} \\ $$$$ \\ $$$${D}_{\mathrm{1}} =\mathrm{16}{p}^{\mathrm{4}} {r}−\mathrm{4}{p}^{\mathrm{3}} {q}^{\mathrm{2}} −\mathrm{128}{p}^{\mathrm{2}} {r}^{\mathrm{2}} +\mathrm{144}{pq}^{\mathrm{2}} {r}−\mathrm{27}{q}^{\mathrm{4}} +\mathrm{256}{r}^{\mathrm{3}} \\ $$$${D}_{\mathrm{2}} ={p}^{\mathrm{2}} +\mathrm{12}{r} \\ $$$${D}_{\mathrm{3}} =−{p}^{\mathrm{2}} +\mathrm{4}{r} \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:{D}_{\mathrm{1}} <\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{2}\:\mathrm{unique}\:\mathrm{real}\:+\:\mathrm{1}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{conjugated}\:\mathrm{complex}\:\mathrm{solutions} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:{D}_{\mathrm{1}} >\mathrm{0}\wedge{p}<\mathrm{0}\wedge{D}_{\mathrm{3}} <\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{4}\:\mathrm{unique}\:\mathrm{real}\:\mathrm{solutions} \\ $$$$ \\ $$$$\left(\mathrm{3}\right)\:{D}_{\mathrm{1}} >\mathrm{0}\wedge\left({p}>\mathrm{0}\vee{D}_{\mathrm{3}} >\mathrm{0}\right) \\ $$$$\Rightarrow\:\mathrm{2}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{conjugated}\:\mathrm{complex}\:\mathrm{solutions} \\ $$$$ \\ $$$$\left(\mathrm{4}\right)\:{D}_{\mathrm{1}} =\mathrm{0}\wedge{p}<\mathrm{0}\wedge{D}_{\mathrm{3}} <\mathrm{0}\wedge{D}_{\mathrm{2}} \neq\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{1}\:\mathrm{real}\:\mathrm{double}\:+\:\mathrm{2}\:\mathrm{unique}\:\mathrm{real}\:\mathrm{solutions} \\ $$$$ \\ $$$$\left(\mathrm{5}\right)\:{D}_{\mathrm{1}} =\mathrm{0}\wedge\left({D}_{\mathrm{3}} >\mathrm{0}\vee{p}>\mathrm{0}\wedge\left({D}_{\mathrm{3}} \neq\mathrm{0}\vee{q}\neq\mathrm{0}\right)\right) \\ $$$$\Rightarrow\:\mathrm{1}\:\mathrm{real}\:\mathrm{double}\:+\:\mathrm{1}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{conjugated}\:\mathrm{complex}\:\mathrm{solutions} \\ $$$$ \\ $$$$\left(\mathrm{6}\right)\:{D}_{\mathrm{1}} =\mathrm{0}\wedge{D}_{\mathrm{2}} =\mathrm{0}\wedge{D}_{\mathrm{3}} \neq\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{1}\:\mathrm{real}\:\mathrm{triple}\:+\:\mathrm{1}\:\mathrm{unique}\:\mathrm{real}\:\mathrm{solutions} \\ $$$$ \\ $$$$\left(\mathrm{7}\right)\:{D}_{\mathrm{1}} =\mathrm{0}\wedge{D}_{\mathrm{3}} =\mathrm{0}\wedge{p}<\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{2}\:\mathrm{real}\:\mathrm{double}\:\mathrm{solutions} \\ $$$$ \\ $$$$\left(\mathrm{8}\right)\:{D}_{\mathrm{1}} =\mathrm{0}\wedge{D}_{\mathrm{3}} =\mathrm{0}\wedge{p}>\mathrm{0}\wedge{q}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{2}\:\mathrm{imaginary}\:\mathrm{double}\:\mathrm{solutions} \\ $$$$ \\ $$$$\left(\mathrm{9}\right)\:{D}_{\mathrm{1}} =\mathrm{0}\wedge{D}_{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{1}\:\mathrm{real}\:\mathrm{fourfold}\:\mathrm{solution} \\ $$

Commented by Tawa11 last updated on 02/Sep/21

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com