Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 152631 by mnjuly1970 last updated on 30/Aug/21

Answered by Olaf_Thorendsen last updated on 30/Aug/21

I = ∫_0 ^1 ((ln(1−x^2 +x^4 ))/x^2 ) dx  I = [−((ln(1−x^2 +x^4 ))/x)]_0 ^1 −∫_0 ^1 −(1/x)(((4x^3 −2x)/(x^4 −x^2 +1))) dx  I = 2∫_0 ^1 ((2x^2 −1)/(x^4 −x^2 +1)) dx  I = 2∫_0 ^1 ((2x^2 −1)/((x^2 −(√3)x+1)(x^2 +(√3)x+1))) dx  etc...

I=01ln(1x2+x4)x2dxI=[ln(1x2+x4)x]01011x(4x32xx4x2+1)dxI=2012x21x4x2+1dxI=2012x21(x23x+1)(x2+3x+1)dxetc...

Commented by SANOGO last updated on 31/Aug/21

good

good

Commented by mnjuly1970 last updated on 31/Aug/21

thanks alot...

thanksalot...

Commented by Ar Brandon last updated on 02/Sep/21

I=2∫_0 ^1 ((2x^2 −1)/(x^4 −x^2 +1))dx=  2x^2 −1=x^2 −1+(1/2)[(x^2 −1)+(x^2 +1)]                 =(3/2)(x^2 −1)+(1/2)(x^2 +1)  I=3∫_0 ^1 ((x^2 −1)/(x^4 −x^2 +1))dx+∫_0 ^1 ((x^2 +1)/(x^4 −x^2 +1))dx    =3∫_0 ^1 ((1−(1/x^2 ))/(x^2 −1+(1/x^2 )))dx+∫_0 ^1 ((1+(1/x^2 ))/(x^2 −1+(1/x^2 )))dx    =3∫_0 ^1 ((1−(1/x^2 ))/((x+(1/x))^2 −3))dx+∫_0 ^1 ((1+(1/x^2 ))/((x−(1/x))^2 +1))dx    =−(√3)[argth(((x^2 +1)/( (√3)x)))]_0 ^1 +[arctan(((x^2 −1)/( (√3)x)))]_0 ^1     =((√3)/2)[ln∣((x^2 −(√3)x+1)/(x^2 +(√3)x+1))∣]_0 ^1 +(π/2)=((√3)/2)ln(((2−(√3))/(2+(√3))))+(π/2)    =((√3)/2)ln((1/((2+(√3))^2 )))+(π/2)=(π/2)−(√3)ln(2+(√3))    =(1/2)(π−2(√3)ln(2+(√3)))

I=2012x21x4x2+1dx=2x21=x21+12[(x21)+(x2+1)]=32(x21)+12(x2+1)I=301x21x4x2+1dx+01x2+1x4x2+1dx=30111x2x21+1x2dx+011+1x2x21+1x2dx=30111x2(x+1x)23dx+011+1x2(x1x)2+1dx=3[argth(x2+13x)]01+[arctan(x213x)]01=32[lnx23x+1x2+3x+1]01+π2=32ln(232+3)+π2=32ln(1(2+3)2)+π2=π23ln(2+3)=12(π23ln(2+3))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com